Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T23:24:41.475Z Has data issue: false hasContentIssue false

Measurement and Implications of the Cosmic Microwave Background Spectrum

Published online by Cambridge University Press:  25 May 2016

John C. Mather*
Affiliation:
Code 685, Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Cosmic Background Explorer (COBE) was developed by NASA Goddard Space Flight Center to measure the diffuse infrared and microwave radiation from the early universe. It also measured emission from nearby sources such as the stars, dust, molecules, atoms, ions, and electrons in the Milky Way, and dust and comets in the Solar System. It was launched 18 November 1989 on a Delta rocket, carrying one microwave instrument and two cryogenically cooled infrared instruments. The Far Infrared Absolute Spectrophotometer (FIRAS) mapped the sky at wavelengths from 0.01 to 1 cm, and compared the CMBR to a precise blackbody. The spectrum of the CMBR differs from a blackbody by less than 0.03%. The Differential Microwave Radiometers (DMR) measured the fluctuations in the CMBR originating in the Big Bang, with a total amplitude of 11 parts per million on a 10° scale. These fluctuations are consistent with scale-invariant primordial fluctuations. The Diffuse Infrared Background Experiment (DIRBE) spanned the wavelength range from 1.2 to 240 μm and mapped the sky at a wide range of solar elongation angles to distinguish foreground sources from a possible extragalactic Cosmic Infrared Background Radiation (CIBR). In this paper we summarize the COBE mission and describe the results from the FIRAS instrument. The results from the DMR and DIRBE were described by Smoot and Hauser at this Symposium.

Type
Part I: Invited Reviews
Copyright
Copyright © Kluwer 1996 

References

Barney, R. D. (1991) Illuminating Eng. Soc. J., 34, 34.Google Scholar
Bennett, C. L. (1991) IAU XXI Highlights Astron, Bergeron, J., Ed., 9, 335.CrossRefGoogle Scholar
Bennett, C. L. et al. (1992) ApJ, 391, 466.Google Scholar
Bennett, C. L. et al. (1994) ApJ, 434, 587598.Google Scholar
Boggess, N. W. “The Cosmic Background Explorer (COBE): The Mission and Science Overview,” (1991) IAU XXI Highlights Astron, Bergeron, J., Ed., 9, 273.Google Scholar
Boggess, N. W. et al. (1992) ApJ, 397, 420.Google Scholar
Bromberg, B. W. & Croft, J. (1985) Adv. Astron. Sci., 57, 217.Google Scholar
Brown, J. M. et al. (1994) ApJL, 428, L37.Google Scholar
Coladonato, R. J. et al. (1990) Proc. Third Air Force/NASA Symp. on Recent Advances in Multidisciplinary Analysis and Optimization, 370, Anamet, Hayward, CA.Google Scholar
Durrer, R. (1993) “Early Reionization in Cosmology,” Infrared Phys. Technol., 35, 8394.Google Scholar
Fixsen, D. J. et al. (1994a) ApJ, 420, 445449.Google Scholar
Fixsen, D. J. et al. (1994b) ApJ, 420, 457473.Google Scholar
Gulkis, S., Lubin, P. M., Meyer, S. S., & Silverberg, R. F. (1990) Sci. Amer., 262, 132.CrossRefGoogle Scholar
Gush, H.P., Halpern, M., & Wishnow, E.H. (1990) Phys. Rev. Lett., 65, 537.CrossRefGoogle Scholar
Hauser, M. G. et al. (1991) After the First Three Minutes, AIP Conf. Proc, 222, 161, eds. Holt, S. S., Bennett, C. L., & Trimble, V., New York.Google Scholar
Hauser, M. G. (1991) IAU XXI Highlights Astron, Bergeron, J., Ed., 9, 291.Google Scholar
Hawkins, I., and Wright, E. (1988) ApJ, 324, 4659.Google Scholar
Hopkins, R. A., & Castles, S. H. (1985) Proc. SPIE, 509, 207.Google Scholar
Hopkins, R. A., & Payne, D. A. (1987) Adv. Cryogenic Engineering, 33, 925.Google Scholar
Hu, W., Scott, D., and Silk, J. (1994), “Power Spectrum Constraints from Spectral Distortions in the Cosmic Microwave Background,” ApJ, 430, L5.CrossRefGoogle Scholar
Janssen, M. A. & Gulkis, S. (1991) Proc. The Infrared and Submillimetre Sky After COBE, Les Houches, 391, ed. Signore, M. & Dupraz, C., Kluwer, Dordrecht.Google Scholar
Kaiser, M. E., and Wright, E. L. (1990) ApJ, 356, L1.Google Scholar
Mather, J. C. (1982) Opt. Eng., 21, 769.Google Scholar
Mather, J. C. et al. (1990) IAU Colloq. 123, Observatories in Earth Orbit and Beyond, Proc., ed. Kondo, Y., 9, Kluwer, Boston.Google Scholar
Mather, J. C. et al. (1991a) AIP Conf. Proc. After the First Three Minutes, 222, 43, ed. Holt, S. S., Bennett, C. L., & Trimble, V., AIP, New York.Google Scholar
Mather, J. C. (1991b) IAU XXI Highlights Astron, Bergeron, J., Ed., 9, 275.Google Scholar
Mather, J. C., Shafer, R.A., and Fixsen, D. J. (1993) Proc. SPIE, 2019, 146157.CrossRefGoogle Scholar
Mather, J. C. et al. (1994) ApJ, 420, 439444.CrossRefGoogle Scholar
Milam, L. J. (1991) Illuminating Eng. Soc. J., 34, 27.Google Scholar
Mosier, C. L. (1991) AIAA 29th Aerospace Sciences Conference, 91361.Google Scholar
Petuchowski, S. J. & Bennett, C. L. (1992) ApJ, 391, 137140.Google Scholar
Petuchowski, S. J. & Bennett, C. L. (1993) ApJ, 405, 595598.CrossRefGoogle Scholar
Roth, K. C., Meyer, D., & Hawkins, I. (1993) ApJL, 413, L67L71.CrossRefGoogle Scholar
Sampler, H. P. (1990) Proc. SPIE, 1340, 417.CrossRefGoogle Scholar
Smoot, G. F. (1991) IAU XXI Highlights Astron, Bergeron, J., Ed., 9, 281.Google Scholar
Smoot, G. F. et al. (1991) ApJ, 371, L1.Google Scholar
Volz, S. M. & DiPirro, M. J. (1992) Cryogenics, 32, 77.Google Scholar
Volz, S. M. & Ryschkewitsch, M. G. (1990) Superfluid Helium Heat Transfer, HTD, 134, 23, ed. Kelly, J. P. & Schneider, W. J. AME, New York.Google Scholar
Volz, S. M., Dipirro, M. J., Castles, S. H., Rhee, M. S., Ryschkewitsch, M. G., & Hopkins, R. (1990) Proc. Internat. Symp. Optical and Opto-electronic Applied Sci. and Eng., 268, SPIE, San Diego.Google Scholar
Volz, S. M., Dipirro, M. J., Castles, S. H., Ryschkewitsch, M. G., & Hopkins, R. (1991) Adv. Cryogenic Engineering, 37A, 1183.Google Scholar
Wright, E. L. (1982) ApJ, 255, 401407.Google Scholar
Wright, E. L. (1991) Proc. The Infrared and Submillimetre Sky After COBE, Les Houches, 231, ed Signore, M. & Dupraz, C., Kluwer, Dordrecht.Google Scholar
Wright, E. L. (1987) ApJ, 320, 818824.Google Scholar
Wright, E. L. (1990) Ann. NY Acad. Sci., Proc. Texas-ESO-CERN Sym, 647, 190.Google Scholar
Wright, E. L. et al. (1991) ApJ, 381, 200.Google Scholar
Wright, E. L. et al. (1994) ApJ, 420, 450456.Google Scholar
Zeldovich, Ya. B., and Sunyaev, R.A. (1969) Ap&SS, 4, 301.Google Scholar
Zeldovich, Ya. B., and Sunyaev, R.A. (1970) Ap&SS, 7, 20.Google Scholar