Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T06:37:25.387Z Has data issue: false hasContentIssue false

Massive stars and their interstellar environment in the Magellanic Clouds

Published online by Cambridge University Press:  25 May 2016

Michael A. Dopita
Affiliation:
Mt. Stromlo & Siding Spring Observatory, Research School of Astronomy & Astrophysics, Institute of Advanced Studies, Australian National University, Australia,
Sungeun Kim*
Affiliation:
Mt. Stromlo & Siding Spring Observatory, Research School of Astronomy & Astrophysics, Institute of Advanced Studies, Australian National University, Australia,
M. Sally Oey
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA
Tatyana M. Lozinskaya
Affiliation:
Sternberg State Astronomical Institute, Moscow, Russia
*
4Present address: Steward Observatory, University of Arizona, Tucson, AZ, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The winds of massive stars play a major role in setting up and controlling both the phase structure of the interstellar medium in galaxies and the vertical distribution of gas in galactic disks. In turn, these processes provide feedback into control of the star formation rate. Thanks to their proximity, these processes can be studied in detail in the Magellanic Clouds. Here we describe the results of a deep emission-line image survey of the ring nebula population, and a global high-resolution H I and H II survey of the Large Magellanic Cloud. These data provide a new insight into the process of feedback between the disk and the halo gas in disk galaxies in general, and the LMC in particular.

Type
Part 4. Wolf-Rayet stars and other hot massive stars in the Galactic Center and in Local Group giant H II regions (individual stars)
Copyright
Copyright © Astronomical Society of the Pacific 1999 

References

Breysacher, J. 1981, A&AS 43, 203 Google Scholar
Caulet, A., Newell, R. 1996, ApJ 465, 205 CrossRefGoogle Scholar
Dopita, M.A., Bell, J.F., Chu, Y-H, Lozinskaya, T.A. 1994, ApJS 93, 544 CrossRefGoogle Scholar
Dopita, M.A., Mathewson, D.S., Ford, V.L. 1985, ApJ 297, 599 Google Scholar
Dopita, M.A., Ryder, S.D. 1994, ApJ 430, 163 CrossRefGoogle Scholar
Efremov, Y.N., Elmegreen, B.G. 1998, MNRAS 299, 643 CrossRefGoogle Scholar
Elmegreen, B.G. 1998, in: Woodward, C.E., Thronson, H.A. & Shull, M. (eds.), Origins of Galaxies, Stars, Planets and Life, ASP-CS 148, 149 Google Scholar
Kim, S., Staveleley-Smith, L., Dopita, M.A., Freeman, K.C., Sault, R.J., Kesteven, M.J., McConnell, D. 1998a, ApJ 503, 674 Google Scholar
Kim, , Chu, , Stavelely-Smith, & Smith, 1998b, ApJ 503, 729 Google Scholar
Kim, S. et al. 1999, ApJ in press Google Scholar
Kennicutt, R.C., Bresolin, F., Bomans, D.J., Bothun, G.D., Thompson, I.B. 1995, AJ 109, 594 Google Scholar
McCray, R., Kafatos, M. 1987, ApJ 317, 190 Google Scholar
Meaburn, J. 1980, MNRAS 289, 570 Google Scholar
Meatheringham, S.J., Dopita, M.A., Ford, H.C., Webster, B.L. 1988, ApJ 327, 651 CrossRefGoogle Scholar
Oey, M.S., Clarke, C.J. 1997, MNRAS 289, 570 Google Scholar
Oey, M.S., Massey, P. 1995, ApJ 452, 210 Google Scholar
Oey, M.S., Smedley, S.A. 1998, AJ 116, 1263 Google Scholar
Rosado, M., Laval, A., Le Coarer, E., Georgelin, Y.P., et al. 1996, A&A 308, 588 Google Scholar
van der Kruit, P.C., Searle, L. 1981a, A&A 95, 105 Google Scholar
van der Kruit, P.C., Searle, L. 1981b, A&A 95, 116 Google Scholar
van der Kruit, P.C., Searle, L. 1982, A&A 110, 61 Google Scholar
Wang, Q., Helfand, D.J. 1991, ApJ 379, 327 CrossRefGoogle Scholar
Walborn, N.R., Parker, J.W. 1992, ApJ 399, L87 CrossRefGoogle Scholar
Weis, K., Chu, Y.-H., Duschl, W.J., Bomans, D.J. 1997, A&A 325, 1157 Google Scholar