Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T12:46:04.110Z Has data issue: false hasContentIssue false

Mass Measurement of Accreting Magnetic White Dwarfs with Hard X-Ray Spectroscopy

Published online by Cambridge University Press:  25 May 2016

M. Ishida
Affiliation:
Institute of Space and Astronautical Science 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229, JAPAN
R. Fujimoto
Affiliation:
Institute of Space and Astronautical Science 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229, JAPAN

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accreting magnetic white dwarfs are usually found as component stars in Magnetic Cataclysmic Variables (MCVs), in which a white dwarf with B = 105-8 G accepts mass from a late type (secondary) star via Roche Lobe overflow. Matter from the secondary is funneled by the magnetic field and concentrates on the magnetic pole(s) of the white dwarf. Since the accretion flow becomes highly supersonic, a standing shock wave is formed close to the white dwarf. The temperature of the plasma at the shock front reflects the gravitational potential and can be denoted as a function of the mass (M) and the radius (R) of the white dwarf as:

Note here that the height of the shock is expected to be within 10% of the white dwarf radius, and hence neglected here.

Type
Session 3: Diagnostics of High Gravity Objects with X- and Gamma Rays
Copyright
Copyright © Kluwer 1998 

References

Aizu, K. (1973) Prog. Theoret. Phys. , 49, 1184 CrossRefGoogle Scholar
Cropper, M., Ramsay, G. and Wu, K. (1997) MNRAS , in press Google Scholar
Done, C. and Magdziarz, ?? (1997) MNRAS , submitted Google Scholar
Fujimoto, R. and Ishida, M. (1997) ApJ , 474, 774 CrossRefGoogle Scholar
Fujimoto, R. (1996) , Google Scholar
Hamada, T. and Salpeter, E. E. (1961) ApJ , 134, 683 CrossRefGoogle Scholar
Hellier, C. (1996) in IAU Colloq. 158, Cataclysmic Variables and Related Objects , eds. Evans, A. and Wood, J. H., Kluwer, Dordrecht, p. 143 CrossRefGoogle Scholar
Ishida, M. and Fujimoto, R. (1995) in Cataclysmic Variables , eds. Bianchini, A., Della-Valle, M., Orio, M., Kluwer, Dordrecht, p. 93 CrossRefGoogle Scholar
Kamata, Y. and Koyama, K. (1993), ApJ , 405, 307 CrossRefGoogle Scholar
Koyama, K., Takano, S., Tawara, Y., Matsumoto, K., Noguchi, K., Fukui, Y., Iwata, T., Ohashi, N., Tatematsu, K., Takahashi, N., Umemoto, T., Hodapp, K. W., Rayner, J. and Makishima, K. (1991) ApJ , 377, 240 CrossRefGoogle Scholar
Mewe, R., Gronenschild, E. H. B. M. and van den Oord, G. H. J. (1985) A&A Suppl. , 62, 197 Google Scholar
Nauenberg, M. (1972) ApJ , 175, 417 CrossRefGoogle Scholar
Silber, A. D., Remillard, R. A., Horne, K. and Bradt, H. V., (1994) ApJ , 424, 955 CrossRefGoogle Scholar
Smith, R. C., Collier-Cameron, A. and Tucknott, D. S. (1993) in Cataclysmic Variables and Related Objects , eds. Regev, O. and Shaviv, G. (Ann. Israel Phys. Soc., Vol. 10), p. 70 Google Scholar