Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T03:26:24.502Z Has data issue: false hasContentIssue false

Mappings in Astrodynamics

Published online by Cambridge University Press:  07 August 2017

C. Froeschlé*
Affiliation:
Observatoire de la Côte d'Azur, B.P. 139, F-06003 Nice Cedex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review mappings mainly devised for the study of the dynamics of comets and asteroids. An attempt of a typology according to the method used to devise the mapping and to its deterministic or stochastic character is made.

Type
Part VII - Dynamical Systems. Maps. Integrators
Copyright
Copyright © Kluwer 1992 

References

Duncan, M., Quinn, T., Tremaine, S. (1989) ‘The long-term evolution of orbits in the solar system: a mapping approach’, Icarus 82, 402418 CrossRefGoogle Scholar
Chirikov, B.V. (1979) ‘A universal instability of many-dimensional oscilator systems’, Phys. Rep. 52, 263379 CrossRefGoogle Scholar
Froeschlé, C. (1970) ‘A numerical study of the stochasticity of dynamical systems with two degrees of freedom’, Astron. Astrophys. 9, 1523 Google Scholar
Froeschlé, C., Scholl, H. (1977) ‘A qualitative comparison between the circular and elliptic Sun-Jupiter-Asteroïds problem at commensurabilities’, Astron. Astrophys. 57, 3339 Google Scholar
Froeschlé, C., Rickman, H. (1980) ‘New Monte Carlo simulations of the orbital evolution of short period comets and comparison with observations’, Astron. Astrophys. 82, 183194 Google Scholar
Froeschlé, C., Rickman, H (1981) ‘A Monte Carlo Investigation of Jovian Perturbations on Short-Period Comet Orbits’, Icarus 46, 400414 Google Scholar
Froeschlé, C., Rickman, H. (1988) ‘Monte Carlo modeling of cometary dynamics’, Celestial Mech. 43, 265284 CrossRefGoogle Scholar
Froeschlé, C., Petit, J.M. (1990) ‘Polynomial approximations of Poincaré maps for Hamiltonian systems’, Astron. Astrophys. 238, 413423 Google Scholar
Hadjidemetriou, J. (1991) ‘Mapping models for Hamiltonian systems with applications to resonant Asteroïd motion’, preprint Google Scholar
Heisler, J., Tremaine, S. (1986) ‘The influence of the galactic tidal field on the Oort comet cloud’, Icarus 65, 1326 CrossRefGoogle Scholar
Hénon, M., Petit, J.M. (1986) ‘Series expansions for encounter-type solutions of Hill's problem’, Celestial Mech. 38, 67100 Google Scholar
Henrard, J., Lemaître, A. (1987) ‘A perturbative treatment for the 2/1 jovian resonance’, Icarus 69, 266279 Google Scholar
Lago, B., Cazenave, A. (1983) ‘Evolution of the cometary perihelion distance in the Oort cloud’, Icarus 53, 6883 Google Scholar
Levinson, H.F. (1991) ‘The long-term dynamical behaviour of small bodies in the Kuiper belt’, Astron. J. Vol 102, N° 2, 787794 Google Scholar
Lichtenberg, A.J., Lieberman, M.A. (1983), Regular and stochastic motion, Springer Verlag CrossRefGoogle Scholar
Murray, C.D., Fox, K. (1984) ‘Structure of the 3/1 jovian resonance: a comparison of numerical methods’, Icarus 59, 221233 Google Scholar
Murray, C.D. (1986) ‘Structure of the 2/1 and 3/2 jovian resonances’, Icarus 65, 7082 Google Scholar
Petit, J.M., Froeschlé, C. (1991) ‘Polynomial approximations of Poincaré maps for Hamiltonian systems II’ submitted to Astron. Astrophys. Google Scholar
Petrosky, T.Y., Broucke, R. (1988) ‘Area preserving mappings and deterministic chaos for nearly parabolic motions’, Celest. Mech. 42, 5379 Google Scholar
Remy, F., Mignard, F. (1985) ‘Dynamical evolution of the Oort cloud I. A Monte Carlo simulation’, Icarus 63, 119 Google Scholar
Rickman, H., Froeschlé, C. (1979) ‘Orbital evolution of short-period comets treated as a Markov process’, Astron. J. 84, 19101917 Google Scholar
Rickman, H., Froeschlé, C. (1983) ‘A Keplerian Method to estimate Perturbations in the Restricted Three-Body Problem’, Moon and Planets 28, 6986 Google Scholar
Rickman, H., Froeschlé, C. (1988) ‘Cometary dynamics’, Celest. Mech. 43, 243263 Google Scholar
Rickman, H., Vaghi, S. (1976) ‘A Monte Carlo simulation of the orbital evolution of comets in the inner planetary region’, Astron. Astrophys. 51, 327342 Google Scholar
Sagdeev, R.Z., Zaslavsky, G.M. (1987) ‘Stochasticity in the Kepler problem and a model of possible dynamics of comets in the Oort cloud’, il Nuovo Cimento, Vol 97, BN2, 119130 CrossRefGoogle Scholar
Scholl, H., Froeschlé, C. (1974) ‘Ateroïdal motion at the 3/1 commensurability’, Astron. Astrophys. 33, 455458 Google Scholar
Scholl, H., Froeschlé, C. (1975) ‘Asteroïdal motion at teh 5/2, 7/3 and 2/1 resonances’, Astron. Astrophys. 42, 457463 Google Scholar
Sidlichovsky, M., Melando, B. (1986) ‘Maping for the 5/2 asteroïdal commensurability’, Bull. Astron. Inst. Czech. 37, 6580 Google Scholar
Sidlichovsky, M. (1991) ‘Mapping for the third and fourth order asteroïdal resonances’, Proceeding of the Tokyo Symposium on ‘Celestial Mechanics’, ed. Kinoshita, H. and Yoshida, H. 3844 Google Scholar
Varosi, F, Gebogi, C., Yorke, J.A. (1987) ‘Symplicial approximation of Poincaré maps of differential equations’, Phys. Lett. A 124, 5964 Google Scholar
Weissman, P.R. (1982) ‘Dynamical history of the Oort cloud’ in Comets, (ed. Wilkening, L.L.), Univ. Arizona Press, Tucson, 637658 CrossRefGoogle Scholar
Wisdom, J. (1982) ‘The origin of the Kirkwood gaps: a mapping for asteroïdal motion near the 3/1 commensurability’, Astron. J. 87, 577593 Google Scholar
Wisdom, J. (1983) ‘Chaotic behaviour and the origin of the 3/1 Kirkwood gap’, Icarus 56, 5174 Google Scholar
Wisdom, J. (1985) ‘A perturbative treatment of motion near the 3/1 commensurability’, Icarus 63, 272289 Google Scholar