Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T06:17:46.713Z Has data issue: false hasContentIssue false

Lunar Occultations: From Past to Future Achievements

Published online by Cambridge University Press:  19 July 2016

A. Richichi*
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-W-6900 Heidelberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For several decades, lunar occultations have represented a powerful and productive technique for high angular resolution investigations of a broad class of astronomical sources: from stellar angular diameters to close binaries, from circumstellar shells to the Galactic Centre.

The resolution and sensitivity offered by lunar occultations still compare favorably with the capabilities of other more modern methods in the optical and near-infrared. A remarkable fact, when one considers that during the past 20 years practically nothing or very little has changed in the way we observe lunar occultations: a sharp contrast with the impressive technological and scientific advancements of other techniques.

The novel possibility of using small areas of fast-readout, low-noise array detectors to record lunar occultations, however, is about to bring radical improvements. We discuss the impact of such detectors on the efficiency of observation and the gain for what concerns the resolution and sensitivity of lunar occultations measurements. New applications such as wavelength-resolved observations and investigations of low-contrast extended sources appear particularly interesting.

Type
Imaging Techniques
Copyright
Copyright © Kluwer 1994 

References

Böhme, D.: 1978, Astron. Nachr., 299, 243.Google Scholar
Di Benedetto, G.P., Rabbia, Y.: 1987, A & A, 188, 114. 1990, AJ, 100, 1601.Google Scholar
Eddington, A.S.: 1909, . Not. R. Astr. Soc., 69, 178.CrossRefGoogle Scholar
Evans, D.S., Fekel, F.C.: 1979, ApJ, 228, 497.Google Scholar
Evans, D.S., Edwards, D.A., Frueh, M., McWilliam, A., Sandmann, W.H.: 1985, AJ, 90, 2360.Google Scholar
Gies, D.R., McKibben, W.P., Kelton, P.W., Opal, C.B., Sawyer, S.: 1990, AJ, 100, 1601.Google Scholar
Gliese, W., Jahreiss, H.: 1990, Preliminary Version of the 3rd Catalogue of Nearby Stars. Google Scholar
Knoechel, G., von der Heide, K.: 1978, A & A, 67, 209.Google Scholar
Leinert, Ch., Haas, M., Richichi, A., Mundt, R., Zinnecker, H.: 1991, A & A, 250, 407.Google Scholar
Leinert, Ch., Weitzel, N., Haas, M., Lenzen, R., Zinnecker, H., Christou, J., Ridgway, S.T., Jameson, R., Richichi, A.: 1992, Complementary Approaches to Double and Multiple Star Research, McAlister, H. A. and Hartkopf, W. I., eds., p. 21.Google Scholar
McMahon, P.A.: 1909, Not. R. Astr. Soc., 69, 178.Google Scholar
Mozurkewich, D., Johnston, K.J., Simon, R.S., Bowers, P.F., Gaume, R., Hutter, D.J., Colavita, M.M., Shao, M., Pan, X.P.: 1991, AJ, 101, 2207.Google Scholar
Richichi, A.: 1988, Mem. Soc. Astron. Ital., 58, 431.Google Scholar
Richichi, A., Lisi, F., Di Giacomo, A.: 1992, A & A, 254, 149.Google Scholar
Ridgway, S.T., Joyce, R.R., White, N.M., Wing, R.F.: 1980, ApJ, 235, 126.Google Scholar
Simon, M., Chen, W.P., Forrest, W.J., Garnett, J.D., Longmore, A.J., Gauer, T., Dixon, R.I.: 1990, ApJ, 360, 95.Google Scholar
Simon, M.: 1992, Complementary Approaches to Double and Multiple Star Research, McAlister, H. A. and Hartkopf, W. I., eds., p. 41.Google Scholar
Simons, D.A., Hodapp, K.W., Becklin, E.E.: 1990, ApJ, 360, 106.Google Scholar
Stecklum, B.: 1992, AJ, 104, 1623.Google Scholar
Véron-Cetty, M.P., Véron, P.: 1991, European Southern Observatory Scientific Report, no. 10.Google Scholar
White, N.M.: 1987, Vistas in Astronomy, 30, 13.Google Scholar
White, N.M., Feierman, B.H.: 1987, AJ, 94, 751 Google Scholar
Whitford, A.E.: 1939, ApJ, 89, 472. AJ, 94, 751 Google Scholar