Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T04:53:40.846Z Has data issue: false hasContentIssue false

The Large Scale Structure Peak as a Comoving Standard Ruler

Published online by Cambridge University Press:  26 May 2016

Boudewijn F. Roukema
Affiliation:
Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune, 411 007, India ([email protected])
Gary A. Mamon
Affiliation:
Institut d'Astrophysique de Paris, 98 bis boulevard Arago, F-75014, Paris, France ([email protected]) and DAEC, Observatoire de Paris-Meudon, 5 place Jules Janssen, F-92195 Meudon Cedex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Estimates of the curvature parameters Ω0 (density parameter) and Δ0 (cosmological constant) can be made geometrically by use of either a standard candle or a standard ruler. Just as supernovae of Type Ia appear to provide a good empirical standard candle, it now appears observationally justified to use the peak in the power spectrum of density perturbations at L ≍ 130±10h-1 Mpc as an empirical standard rod. It will be shown that voids of this size are traced by quasars in a homogeneous catalogue near the South Galactic Pole at z ˜ 2 and that the large scale structure peak of the catalogue constrains the value of Ω0 to 0.1 < Ω0 < 0.45 (68% confidence), independently of Δ0. Combination with the supernovae Ia data is sufficient to show that the observable Universe is almost flat. In other words, the combination of a standard ruler and a standard candle detected in two presently available data sets is sufficient to show that the Universe is nearly flat, independently of any microwave background data or any other data analyses.

Type
Part IX: Putting it all together
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Baugh, C. M. & Efstathiou, G. 1993, MNRAS, 265, 145.Google Scholar
Baugh, C. M. & Efstathiou, G. 1994, MNRAS, 267, 323.Google Scholar
Broadhurst, T. J., Ellis, R. S., Koo, D. C. & Szalay, A. S. 1990, Nature, 343, 726.Google Scholar
Broadhurst, T. & Jaffe, A. H. 2000, in press (arXiv:astro-ph/9904348).Google Scholar
de Lapparent, V., Geller, M. J. & Huchra, J. P. 1986, ApJ, 302, L1.Google Scholar
Deng, X.-F., Deng, Z.-G. & Xia, X.-Y. 1996, Chin.Astron.Astroph., 20, 383.Google Scholar
Deng, Z., Xiaoyang, X. & Fang, L.-Zh 1994, ApJ, 431, 506.CrossRefGoogle Scholar
Einasto, M., Einasto, J., Tago, E., Dalton, G. B. & Andernach, H. 1994, MNRAS, 269, 301.Google Scholar
Einasto, J. et al. 1997, Nature, 385, 139.Google Scholar
Gaztañaga, E. & Baugh, C. M. 1998, MNRAS, 294, 229.Google Scholar
Iovino, A., Clowes, R. & Shaver, P. 1996, A&as, 119, 265 electronically at: http://cdsweb.u-strasbg.fr/cgi-bin/Cat?;J/A+AS/119/265.Google Scholar
Perlmutter, S. et al. 1999, ApJ, 517, 565 (arXiv:astro-ph/9812133).Google Scholar
Roukema, B. F., Mamon, G. A. 2000, A&A, 358, 395, (arXiv:astro-ph/9911413).Google Scholar