Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T00:42:59.175Z Has data issue: false hasContentIssue false

The Large Scale Structure of Superluminal Radio Sources

Published online by Cambridge University Press:  03 August 2017

R. S. Simon
Affiliation:
E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C. 20375-5000
K. J. Johnston
Affiliation:
E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C. 20375-5000

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The standard model for apparent superluminal motion is that of relativistic motion in a jet pointed nearly along the line of sight. Variants of this model give a natural explanation for the extremely asymmetric morphology observed in the radio cores of these sources. Despite this, examination of the large scale structure in superluminal radio sources strongly suggests that large scale symmetrical structure with two large radio lobes placed on either side of the compact emission is a common phenomenon among these objects. When a comparison is done between the large scale structure typically seen in double quasars and that seen in superluminal sources, it is found that the de-projected physical sizes estimated for superluminal quasars are similar to the size scales observed in the double quasars. Large scale radio structure is probably as common among apparent superluminal sources as it is in radio quasars.

Type
Extragalactic
Copyright
Copyright © Reidel 1988 

References

(1) Walker, R. C., Benson, J. M., and Unwin, S. C. 1987, Ap. J. 316, 546.CrossRefGoogle Scholar
(2) Schilizzi, R. T. and de Bruyn, A. G. 1983, Nature, 303, 26.CrossRefGoogle Scholar
(3) Porcas, R. W. 1984, in IAU Symposium #110, VLBI and Compact Radio Sources, ed. Fanti, , Kellermann, , and Setti, (Dordrecht: Reidel), 157.CrossRefGoogle Scholar
(4) Pearson, T. J., Perley, R. A., and Readhead, A. C. S. 1985, Astron. J., 90, 738.CrossRefGoogle Scholar
(5) Pearson, T. J., Readhead, A. C. S., and Barthel, P. 1987, in “Superluminal Radio Sources”, ed. Zensus, J. A., and Pearson, T. J. (Cambridge: Cambridge Univ. Press), 94.Google Scholar
(6) Hough, D. H., and Readhead, A. C. S. 1987, in “Superluminal Radio Sources”, ed. Zensus, J. A., and Pearson, T. J. (Cambridge: Cambridge Univ. Press), 114.Google Scholar
(7) Cohen, M. H. and Unwin, S. C. 1984, in IAU Symposium 110, “VLBI and Compact Radio Sources” ed Fanti, R., Kellermann, K., and Setti, G. (Dordrecht:Reidel), 95.CrossRefGoogle Scholar
(8) Biretta, J. A., Moore, R. L., and Cohen, M. H. (1986). Ap. J. 308, 93.CrossRefGoogle Scholar
(9) Pearson, T. J., Barthel, P. D., Lawrence, C. R., and Readhead, A. C. R. S., 1986, Ap. J. (Lett.), 300, L25.CrossRefGoogle Scholar
(10) Browne, I. W. A. and Orr, M. J. L. 1981, in “Optical Jets in Galaxies”, Proc. of ESO/ESA workshop ESA SP-162 (Noordwijk: European Space Agency), 87.Google Scholar
(11) Barthel, P. D. 1987, in “Superluminal Radio Sources”, ed. Zensus, J. A., and Pearson, T. J. (Cambridge: Cambridge Univ. Press), 148.Google Scholar
(12) Eckart, A., Witzel, A., Biermann, P., Pearson, T. J., Readhead, A. C. S., and Johnston, K. J. 1985, Ap. J. (Lett.), 296, L23.CrossRefGoogle Scholar
(13) Johnston, K. J., Simon, R. S., Eckart, A., Biermann, P., Schalinski, C., Witzel, A., and Strom, R. G. 1987, Ap. J. (Lett.), 313, L85.CrossRefGoogle Scholar
(14) Waak, J. A., Spencer, J. H., Johnston, K. J., and Simon, R. S. 1985, A.J., 90, 1989.CrossRefGoogle Scholar
(15) Perley, R., Fomalont, E., and Johnston, K. J. 1982, Ap. J. (Lett.), 255, L93.CrossRefGoogle Scholar
(16) Simon, R. S., Hall, J., Johnston, K. J., Spencer, J. H., Waak, J. A., and Mutel, R. L. 1987, Ap. J. (Lett.), submitted.Google Scholar