Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T06:00:34.140Z Has data issue: false hasContentIssue false

Jet-Induced Star Formation

Published online by Cambridge University Press:  26 May 2016

Wil van Breugel
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Chris Fragile
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Peter Anninos
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Stephen Murray
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Jets from radio galaxies can have dramatic effects on the medium through which they propagate. We review observational evidence for jet-induced star formation in low (‘FR-I’) and high (‘FR-II’) luminosity radio galaxies, at low and high redshifts respectively. We then discuss numerical simulations which are aimed to explain a jet-induced starburst (‘Minkowski's Object’) in the nearby FR-I type radio galaxy NGC 541. We conclude that jets can induce star formation in moderately dense (10 cm−3), warm (104 K) gas; that this may be more common in the dense environments of forming, active galaxies; and that this may provide a mechanism for ‘positive’ feedback from AGN in the galaxy formation process.

Type
Part 4. Recycling
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Anninos, P., & Fragile, P. C. 2003, ApJS, 144, 243.CrossRefGoogle Scholar
Anninos, P., et al. 2003, ApJS, 147, 177.CrossRefGoogle Scholar
Bicknell, G. V. et al. 2000, ApJ, 540, 678.Google Scholar
Begelman, M. C. & Cioffi, D. F. 1989, ApJ, 345, L21.Google Scholar
Blanco, V. M. et al. 1975, ApJ, 198, L63.CrossRefGoogle Scholar
Chambers, K. C. et al. 1987, Nature, 329, 604.Google Scholar
De Breuck, C. et al. 2003, A&A, 401, 911.Google Scholar
De Young, D. S. 1989, ApJ, 342, L59.CrossRefGoogle Scholar
Dey, A. et al. 1997, ApJ, 490, 698.CrossRefGoogle Scholar
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS, 167, 31P.Google Scholar
Ferland, G. J. et al. 2002, MNRAS, 333, 876.CrossRefGoogle Scholar
Fragile, P. C. et al. 2003, ApJ, in press.Google Scholar
McKee, C. F. et al 1994, ApJ, 420, 213.Google Scholar
Laing, R. A. & Bridle, A. H. 2002, MNRAS, 336, 1161.CrossRefGoogle Scholar
Mould, J. R. et al. 2000, ApJ, 536, 266.CrossRefGoogle Scholar
McCarthy, P. J. et al. 1987, ApJ, 321, L29.Google Scholar
McNamara, B. R. 2002, New Astronomy Review, 46, 141.Google Scholar
Mellema, G. et al. 2002, A&A, 395, L13.Google Scholar
Poludnenko, A. Y. et al. 2002, ApJ, 576, 832.Google Scholar
Rees, M. J. 1989, MNRAS, 239, 1P.Google Scholar
van Breugel, W. et al. 1985, ApJ, 293, 83.CrossRefGoogle Scholar