Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T00:34:14.457Z Has data issue: false hasContentIssue false

Interstellar Dust in Collected Interplanetary Dust Particles

Published online by Cambridge University Press:  23 September 2016

Scott A. Sandford*
Affiliation:
NASA/Ames Research Center, Moffett Field, CA 94035

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the past decade interplanetary dust particles (IDPs) have been collected in the earth's stratosphere. Isotopic studies of these particles have demonstrated that many of them are greatly enriched in deuterium and at least some of them carry this enrichment in smaller subcomponents. Deuterium enrichments of a similar magnitude are seen in simple molecules in interstellar clouds. Deuterium enrichment in IDPs can be taken as evidence for the presence of interstellar material. It is not clear at this time whether the carriers of the isotopic anomalies represent true, unaltered interstellar dust grains, or whether they represent an altered component with a molecular ‘memory’ of original interstellar grains. The spectra of different components in the collected dust provide suggestive matches to similar components evident in the astronomical spectra of dust in comets, dense molecular clouds, and emission nebulae. The known extraterrestrial nature of the particles, the possible presence of interstellar material in them, and their spectral similarity to many astronomical objects all argue that the collected IDPs provide useful analogs for the modelling of interstellar dust.

Type
Section VII : Interstellar Dust and the Solar System
Copyright
Copyright © Kluwer 1989 

References

Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1985, Ap. J. (Letters), 290, L25L28.Google Scholar
Allamandola, L. J., Sandford, S. A., and Wopenka, B. 1987, Science, 237, 5659.Google Scholar
Bradley, J. P. 1988, Geochim. Cosmochim. Acta., 52, 889900.Google Scholar
Bradley, J. P., Sandford, S. A., and Walker, R. M. 1988, in Meteorites and the Early Solar System, eds. Kerridge, J. and Matthews, M., (Tucson: Univ. Ariz. Press), in press.Google Scholar
Bregman, J., Allamandola, L. J., Simpson, J., Tielens, A. G. G. M., and Witteborn, F. 1984, in Airborne Astronomy, NASA CP-2353, p. 140147.Google Scholar
Bregman, J. D., Gampins, H., Witteborn, F. C., Wooden, D. H., Rank, D. M., Allamandola, L. J., Cohen, M., and Tielens, A. G. G. M. 1987, Astr. Ap., 187, 616620.Google Scholar
Fraundorf, P. 1981, Geochim. Cosmochim. Acta., 45, 915943.Google Scholar
Fraundorf, P., Brownlee, D. E., and Walker, R. M. 1982, in Comets, ed. Wilkening, L. L., (Tucson: Univ. Ariz. Press), p. 383409.Google Scholar
Léger, A., and Puget, J. L. 1984, Astr. Ap., 137, L5L8.Google Scholar
Mackinnon, I. D. R., and Rietmeijer, F. J. M. 1987, Rev. Geophys., 25, 15271553.Google Scholar
McKeegan, K. D., Walker, R. M., and Zinner, E. 1985, Geochim. Cosmochim. Acta., 49, 19711987.Google Scholar
Nemanich, R. J., and Solin, S. A. 1979, Phys. Rev. B, 20, 392401.Google Scholar
Sandford, S. A. 1987, Fund. Cosmic Phys., 12, 173.Google Scholar
Sandford, S. A., and Walker, R. M. 1985, Ap. J., 291, 838851.Google Scholar
Wopenka, B. 1988, Earth Planet. Sci. Letters, 88, 221231.Google Scholar
Yang, J., and Epstein, S. 1983, Geochim. Cosmochim. Acta., 47, 21992215.Google Scholar