Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T06:41:47.608Z Has data issue: false hasContentIssue false

Interstellar Dust and the Organic Inventories of Early Solar Systems

Published online by Cambridge University Press:  19 September 2017

D. C. B. Whittet*
Affiliation:
New York Center for Studies of the Origins of Life, and Department of Physics & Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interstellar dust grains are vectors for cosmic carbon and other biogenic chemical elements. They deliver carbon to protoplanetary disks in various refractory phases (amorphous, graphitic, etc.), and they are coated with icy mantles that contain organic molecules and water. The nature of the organics present in and on the dust appears to be closely related to physical conditions. Complex molecules may be synthesized when simple ices are irradiated. Astronomical observations show that this occurs in the vicinity of certain massive protostars, but it is not known whether our Solar System formed in such a region. Organic matter does not survive cycling though diffuse regions of interstellar space; any organics delivered to the early Earth must have originated in the parent molecular cloud, or in the solar nebula itself. A key question is thus identified: What was the star-formation environment of the Solar System? Possible constraints are briefly discussed.

Type
Astrochemistry
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Adams, F. C., & Myers, P. C. 2001, ApJ, 553, 744 CrossRefGoogle Scholar
Agarwal, V. K., et al. 1985, Origins of Life, 16, 21 Google Scholar
Anders, E., & Zinner, E. 1993, Meteoritics, 28, 490 CrossRefGoogle Scholar
Bernstein, M. P., Sandford, S. A., & Allamandola, L. J. 1997, ApJ, 476, 932 Google Scholar
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W., & Allamandola, L. J. 2002, Nature, 416, 401 Google Scholar
Briggs, R., Ertem, G., Ferris, J. P., Greenberg, J. M., McCain, P. J., Mendoza-Gomez, C. X., & Schutte, W. 1992, Origins Life Evol. Biosphere, 22, 287 CrossRefGoogle Scholar
de Vries, M. S., Reihs, K., Wendt, H. R., Golden, W. G., Hunziker, H. E., Fleming, R., Peterson, E. & Chang, S. 1993, Geochim. Cosmochim. Acta, 57, 933 Google Scholar
Gibb, E. L., & Whittet, D. C. B. 2002, ApJ, 566, L113 Google Scholar
Gibb, E. L., et al. 2000, ApJ, 536, 347 Google Scholar
Goswami, J. N. & Vanhala, H. A. T. 2000, in Protostars & Planets IV, ed. Mannings, V. et al. (Tucson: University of Arizona Press,), 963 Google Scholar
Greenberg, J. M., Li, A., Mendoza-Gomez, C. X., Schutte, W. A., Gerakines, P. A., & de Groot, M. 1995, ApJ, 455, L177 CrossRefGoogle Scholar
Harper, C. L. 1996, ApJ, 466, 1026 CrossRefGoogle Scholar
Irvine, W. M., Schloerb, F. P., Crovisier, J., Fegley, B., & Mumma, M. J. 2000, in Protostars & Planets IV, ed. Mannings, V. et al. (Tucson: University of Arizona Press), 1159 Google Scholar
Li, A., & Greenberg, J. M. 1997, A&A, 323, 566 Google Scholar
Mennella, V., Brucato, J. R., Colangeli, L., & Palumbo, P. 1999, ApJ, 524, L71 Google Scholar
Palumbo, M. E., Strazzulla, G., Pendleton, Y. J., & Tielens, A. G. G. M. 2000, ApJ, 534, 801 CrossRefGoogle Scholar
Pendleton, Y. J., Tielens, A. G. G. M., Tokunaga, A. T., & Bernstein, M. P. 1999, ApJ, 513, 294 CrossRefGoogle Scholar
Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E., & Lee, T. 2001, ApJ, 548, 1029 Google Scholar
van Dishoeck, E. F., & Blake, G. A. 1998, ARA&A, 36, 317 Google Scholar
Whittet, D. C. B. 2003, in Dust in the Galactic Environment 2nd edition (Bristol: Institute of Physics Publishing)Google Scholar
Whittet, D. C. B., Pendleton, Y. J., Gibb, E. L., Boogert, A. C. A., Chiar, J. E., & Nummelin, A. 2001, ApJ, 550, 793 Google Scholar