Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T00:45:30.576Z Has data issue: false hasContentIssue false

Infrared Emission Mechanism in Large Isolated Molecules

Published online by Cambridge University Press:  23 September 2016

L. B. d'Hendecourt
Affiliation:
Groupe de Physique des Solides de l'E.N.S., Université Paris VII Tour 23 - 2, place Jussieu - 75251 Paris Cédex 05 - France
A. Léger
Affiliation:
Groupe de Physique des Solides de l'E.N.S., Université Paris VII Tour 23 - 2, place Jussieu - 75251 Paris Cédex 05 - France
P. Boissel
Affiliation:
Laboratoire de Photophysique Moléculaire, Université Paris XI Bâtiment 213, 91405 Orsay Cédex - France
F. X. Désert
Affiliation:
NASA Goddard Space Flight Center, Code 685, Greenbelt, MD 207771 - USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The physics which governs the IR emission of a large isolated molecule (e. g. an interstellar PAH) after the absorption of an UV photon is described. We show that the simple thermal approximation is valid and we give the method to calculate emission spectra from absorption spectroscopy data.

Type
Section II: The Overidentified Infrared Emission Features
Copyright
Copyright © Kluwer 1989 

References

Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1985, Ap. J. (Letters), 290, L25.Google Scholar
Avonis, P., Gelbart, W. and El Sayed, M. A. 1977, Chem. Rev., 77, 793.Google Scholar
Birks, J. B. 1970, Photophysics of Aromatic Molecules, (Wiley-Interscience).Google Scholar
Bondibey, V. E. 1984, Ann. Rev. Phys. Chem., 35, 591.CrossRefGoogle Scholar
Cyvin, B. N., Brunvoll, J. and Cyvin, S. J. 1984, Spectrosc. Let., 17 (9), 559.Google Scholar
Cyvin, S. J. 1982, J. of Mol. Struct., 79, 423.Google Scholar
d'Hendecourt, L. and Léger, A. 1987, Astr. Ap., 180, L9, Table 1.Google Scholar
Donn, B. 1968, Ap. J. (Letters), 152, L129.Google Scholar
Forst, W. 1973, Theory of Unimolecular Reactions, (New York: Acad. Press).Google Scholar
Gottfried, N. H., Seilmeier, A., and Kaiser, W. 1984, Chem. Phys. Letters, 111, 326.Google Scholar
Krunhansl, J. and Brooks, H. 1953, J. Chem. Phys., 21, 1663.CrossRefGoogle Scholar
Léger, A. and Puget, J. L. 1984, Astr. Ap., 137, L5.Google Scholar
Léger, A., d'Hendecourt, L. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, NATO ASI Series C, V191, eds. Léger, A., d'Hendecourt, L., Boccara, N., (Dordrecht: Reidel).Google Scholar
Léger, A., Boissel, P. and d'Hendecourt, L. 1988, Phys. Rev. Letters, 60, 921.Google Scholar
Léger, A., d'Hendecourt, L. and Défourneau, D. 1989a, accepted for publication in Astr. Ap. Google Scholar
Léger, A., Boissel, P., Désert, F. X. and d'Hendecourt, L. 1989, submitted to Astr. Ap. Google Scholar
Léger, A., Verstraete, L., Dutuit, O., d'Hendecourt, L., Schmidt, W., Lauer, J. C., Défourneau, D. 1989c, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 173.CrossRefGoogle Scholar
Omont, A. 1986, Astr. Ap., 164, 159.Google Scholar
Oref, I. and Rabinovitch, B. S. 1979, Accounts of Chem. Res., 12, 167.CrossRefGoogle Scholar
Reif, F. 1965, Fundamentals of Statistical and Thermal Physics, (McGraw Hill).Google Scholar
Ryter, and d'Hendecourt, L. B. 1989, Interstellar Dust Contributed Papers, eds. Tielens, A. G. G. M, Allamandola, L. J., NASA CP-3036.Google Scholar
Smalley, R. E. 1983, Ann. Rev. Phys. Chem., 34, 129.Google Scholar
Whitten, G. Z. and Rabinovitch, B. S. 1963, J. Chem. Phys., 38, 2466.CrossRefGoogle Scholar
Wild, W., Seilmeier, A., Gottfried, N. H., Kaiser, W. 1985, Chem. Phys. Letters, 119, 259.Google Scholar