Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T18:48:07.220Z Has data issue: false hasContentIssue false

Identifying old Tidal Dwarf Galaxies in Simulations and in the Nearby Universe

Published online by Cambridge University Press:  26 May 2016

Pierre-Alain Duc
Affiliation:
CNRS FRE 2591 and Service d'astrophysique, CEA-Saclay, France
Frédéric Bournaud
Affiliation:
CNRS FRE 2591 and Service d'astrophysique, CEA-Saclay, France LERMA, Observatoire de Paris, France
Frédéric Masset
Affiliation:
CNRS FRE 2591 and Service d'astrophysique, CEA-Saclay, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most Tidal Dwarf Galaxies (TDGs) so-far discussed in the literature may be considered as young ones or even newborns, as they are still physically linked to their parent galaxies by an umbilical cord: the tidal tail at the tip of which they are usually observed. Old Tidal Dwarf Galaxies, completely detached from their progenitors, are still to be found. Using N-body numerical simulations, we have shown that tidal objects as massive as 109 solar masses may be formed in interacting systems and survive for more than one Gyr. Old TDGs should hence exist in the Universe. They may be identified looking at a peculiarity of their “genetic identity card”: a relatively high abundance in heavy elements, inherited from their parent galaxies. Finally, using this technique, we revisit the dwarf galaxies in the local Universe trying to find arguments pro and con a tidal origin.

Type
Part 4. Recycling
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Barnes, J. E. and Hernquist, L., 1992, Nature 715, 360.Google Scholar
Bonifacio, P., Sbordone, L., Marconi, G., Pasquani, L. and Hill, V., 2004, A&A 414, 503.Google Scholar
Bournaud, F., Duc, P.-A. and Masset, F., 2003, A&A 411, L469.Google Scholar
Braine, J., Duc, P.-A., Lisenfeld, U., Charmandaris, V., Vallejo, O., Leon, S. and Brinks, E., 2001, A&A 378, 51.Google Scholar
Duc, P.-A. and Mirabel, I. F., 1999, in IAUS 186: Galaxy Interactions at Low and High Redshift, Barnes, J. E. and Sanders, D. B. edsGoogle Scholar
Duc, P.-A., Cayatte, V., Balkowski, C., Thuan, T. X., Papaderos, P., van Driel, W., 2001, A&A 369, 763.Google Scholar
Hibbard, J. E. and Mihos, J. C., 1995, AJ 140, 110.Google Scholar
Hunsberger, S. D., Charlton, J. C. and Zaritsky, D. 1996, ApJ, 462, 50.CrossRefGoogle Scholar
Hunter, D. A., Hunsberger, S. D., Roye, E. W., 2000, ApJ 542, 137.CrossRefGoogle Scholar
Iglesias-Páramo, J., van Driel, W., Duc, P.-A., Papaderos, P., Vílchez, J.M., et al., 2003, A&A 406, 453.Google Scholar
Knierman, K. A., Gallagher, S. C., Charlton, J. C., Hunsberger, S. D. and Whitmore, B., 2003, AJ 126, 1227.CrossRefGoogle Scholar
Kroupa, P., New Astronomy, 2, 139.CrossRefGoogle Scholar
Lynden-Bell, D., 1982, The Observatory, 102, 7.Google Scholar
Makarova, L. N., Grebel, E. K., Karachentsev, I. D., Dolphin, A. E., Karachentseva, V. E. et al., 2002, A&A 396, 473.Google Scholar
Poggianti, B. M., Bridges, T. J., Mobasher, B., Carter, D. and Doi, M., 2001, ApJ 562, 689.CrossRefGoogle Scholar
Rakos, K. D., Schombert, J. M., Odell, A. P. and Steindling, S., 2000, ApJ 540, 715.CrossRefGoogle Scholar
Richer, M. and McCall, M., 1995, ApJ 642, 445.Google Scholar
Toomre, A. and Toomre, J., 1972, ApJ 623, 178.Google Scholar
Weilbacher, P. M., Duc, P.-A. and Fritze-v. Alvensleben, U., 2003, A&A 397, 545.Google Scholar