Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T19:43:13.724Z Has data issue: false hasContentIssue false

Heating of Stellar Chromospheres and Transition Regions

Published online by Cambridge University Press:  26 May 2016

Zdzislaw E. Musielak*
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA email: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To explain the heating of stellar chromospheres and transition regions, two classes of heating mechanisms have been considered: dissipation of acoustic and magnetic waves generated in stellar convection zones; and dissipation of currents generated by photospheric motions of surface magnetic fields. The focus of this paper is on the wave heating mechanisms and on recent results which demonstrate that theoretical models of stellar chromospheres based on the wave heating can explain the “basal flux” and the observed Ca II emission in most stars but cannot account for the observed Mg II emission in active stars. The obtained results clearly show that the base of stellar chromospheres is heated by acoustic waves, the heating of the middle and upper chromospheric layers is dominated by magnetic waves associated with magnetic flux tubes, and that other non-wave heating mechanisms are required to explain the structure of the highest layers of stellar chromospheres and transition regions.

Type
Part 9: Heating of Solar and Stellar Coronae
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Baliunas, S.L., et al. 1995, ApJ, 438, 269.CrossRefGoogle Scholar
Bohn, H.U. 1984, A&A, 136, 338.Google Scholar
Buchholz, B., Ulmschneider, P. & Cuntz, M. 1998, ApJ, 494, 700.Google Scholar
Carlsson, M., & Stein, R.F. 1997, ApJ, 481, 500.CrossRefGoogle Scholar
Choudhuri, A.R., Auffret, H. & Priest, E.R. 1993a, Sol. Phys., 143, 49.CrossRefGoogle Scholar
Choudhuri, A.R., Dikpati, M. & Banerjee, D. 1993b, ApJ, 413, 811.CrossRefGoogle Scholar
Cuntz, M., Ulmschneider, P., & Musielak, Z.E. 1998, ApJ, 493, L117.Google Scholar
Cuntz, M., Rammacher, W., Ulmschneider, P., Musielak, Z.E. & Saar, S.H. 1999, ApJ, 522, 1053.Google Scholar
Davila, J.M. 1991, in Mechanisms of Chromospheric and Coronal Heating, eds. Ulmschneider, P., Priest, E.R., Rosner, R., Springer, Heidelberg, 464.CrossRefGoogle Scholar
Defouw, R.J. 1976, ApJ, 209, 266.CrossRefGoogle Scholar
De Pontieu, B., Martens, P.C.H., & Hudson, H.S. 2001, ApJ, 558, 859.CrossRefGoogle Scholar
Donati, J.F. 1999, MNRAS 302, 457.Google Scholar
Dupree, A.K., Whitney, B.A., & Pasquini, L. 1999, ApJ, 520, 751.Google Scholar
Fawzy, D., Rammacher, W., Ulmschneider, P., Musielak, Z.E. & Stepień, K. 2002a, A&A, 386, 971.Google Scholar
Fawzy, D., Ulmschneider, P., Stepień, K., Musielak, Z.E. & Rammacher, W. 2002b, A&A, 386, 983.Google Scholar
Fawzy, D., Stepień, K., Ulmschneider, P., Rammacher, W., & Musielak, Z.E. 2002c, A&A, 386, 994.Google Scholar
Goldreich, P., & Kumar, P. 1988, ApJ, 326, 462.CrossRefGoogle Scholar
Goldstein, M.A. 1976, Aeroacoustic, McGraw-Hill, New York, 94.Google Scholar
Goodman, M.L. 2000, ApJ, 533, 501.Google Scholar
Herbold, G., Ulmschneider, P., Spruit, H.C. & Rosner, R. 1995, A&A, 145, 157.Google Scholar
Huang, P., Musielak, Z.E. & Ulmschneider, P. 1995, A&A, 297, 579.Google Scholar
Jordan, C. 1997, Astr. Geophys., 38, 10.CrossRefGoogle Scholar
Kalkofen, W. 2003a, in Current Theoretical Models and Future High Resolution Solar Observations, eds. Pevtsov, A.A., Uitenbroek, H., APS Conf. Ser., 286, 385.Google Scholar
Kalkofen, W. 2003b, Astron. Nachr., 324, 409.CrossRefGoogle Scholar
Lighthill, M.J. 1952, Proc. R. Soc. Lond. A, 211, 564.Google Scholar
Linsky, J.L. 1991, in Mechanisms of Chromospheric and Coronal Heating, eds. Ulmschneider, P., Priest, E. R., Rosner, R., Springer, Heidelberg, 166.CrossRefGoogle Scholar
Linsky, J.L. et al. 1992, in Cool Stars, Stellar Systems, and the Sun, eds. Giampapa, M.S., Bookbinder, J.A., ASP Conf. Ser. 26, 106.Google Scholar
Mendoza-Briceno, C.A., Erdélyi, R., & Sigalotti, L.G. 2002, ApJ, 579, L49.CrossRefGoogle Scholar
Moore, D. W., & Spiegel, E. A., 1964, ApJ, 139, 48.CrossRefGoogle Scholar
Muller, R., Roudier, Th., Vigneau, J., & Auffret, H., 1994, A&A 283, 232.Google Scholar
Musielak, Z.E. 1991, in Mechanisms of Chromospheric and Coronal Heating, eds. Ulmschneider, P., Priest, E.R., Rosner, R.R., Springer, Heidelberg, 369.Google Scholar
Musielak, Z.E., Rosner, R., Gail, H.P. & Ulmschneider, P. 1995, ApJ, 448, 865.CrossRefGoogle Scholar
Musielak, Z.E., Rosner, R., Stein, R.F. & Ulmschneider, P. 1994, ApJ, 423, 474.Google Scholar
Musielak, Z.E., Rosner, R. & Ulmschneider, P. 1989, ApJ, 337, 470.Google Scholar
Musielak, Z.E., Rosner, R. & Ulmschneider, P. 2000, ApJ, 541, 410.CrossRefGoogle Scholar
Musielak, Z.E., Rosner, R. & Ulmschneider, P. 2002, ApJ, 573, 418.Google Scholar
Musielak, Z.E. & Ulmschneider, P. 2001, A&A, 370, 541.Google Scholar
Musielak, Z.E. & Ulmschneider, P. 2002a, A&A, 386, 606.Google Scholar
Musielak, Z.E. & Ulmschneider, P. 2002b, A&A, 386, 615.Google Scholar
Narain, U. & Ulmschneider, P. 1996, Space Sci. Rev., 75, 453.CrossRefGoogle Scholar
Noble, M.W., Musielak, Z.E., & Ulmschneider, P. 2003, A&A, 409, 1085.Google Scholar
Noble, M.W., Musielak, Z.E., & Ulmschneider, P. 2003a, A&A, submitted.Google Scholar
Parker, E.N. 1981, in Solar Phenomena in Stars and Stellar Systems, Proc. Adv. Study Inst. Bonas, eds. Bonnet, R.M., Dupree, A.K., D. Reidel Pub., 33.Google Scholar
Parker, E.N. 1988, ApJ, 330, 474.Google Scholar
Parker, E.N. 1992, J. Geophys. Res., 97, 4311.Google Scholar
Priest, E.R. 1991, in Mechanisms of Chromospheric and Coronal Heating, eds. Ulmschneider, P., Priest, E.R., Rosner, R., Springer, Heidelberg, 520.Google Scholar
Priest, E.R., & Forbes, T.G. 2000, J. Geophys. Res., 91, 5579.Google Scholar
Priest, E.R., Heyvaerts, J.F., & Title, A.M. 2002, ApJ, 576, 533.Google Scholar
Rammacher, W., & Cuntz, M. 2003, ApJ, 594, L51.Google Scholar
Rammacher, W., & Ulmschneider, P. 2003, ApJ, 589, 988.Google Scholar
Renzini, A., Cacciari, C., Ulmschneider, P., & Schmitz, F. 1977, A&A, 61, 39.Google Scholar
Rutten, R.G.M., Schrijver, C.J., Lemmens, A.F.P. & Zwaan, C. 1991, A&A, 252, 203.Google Scholar
Saar, S.H. 1996, in Stellar Surface Structure, eds. Strassmeier, K., Linsky, J.L., Kluwer, Dordrecht, 237.Google Scholar
Saar, S.H. 2001, in Cool Stars, Stellar Systems, and the Sun, eds. Lopez, R.J.G., Rebolo, R., M.R.Z. Osorio, ASP Conf. Ser., 223, 292.Google Scholar
Schrijver, C.J. 1987, A&A, 172, 111.Google Scholar
Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaaar, H.J. & Shine, R.A. 1997, ApJ, 487, 424.Google Scholar
Solanki, S.K. 1992, Space Sci. Rev., 55, 92.Google Scholar
Spruit, H.C. 1981, A&A, 98, 155.Google Scholar
Stein, R.F. 1967, Sol. Phys., 2, 385.Google Scholar
Stepień, K. 1994, A&A, 292, 191.Google Scholar
Strauss, H.R. 1991, Geophys. Res. Let., 18, 77.Google Scholar
Ulmschneider, P., Fawzy, D., Musielak, Z.E. & Stepień, K. 2001a, ApJ, 559, L167.Google Scholar
Ulmschneider, P. & Musielak, Z.E. 1998, A&A, 338, 311.Google Scholar
Ulmschneider, P., & Musielak, Z.E. 2003, in Current Theoretical Models and Future High Resolution Solar Observations, eds. Pevtsov, A.A., Uitenbroek, H., APS Conf. Ser., 286, 363.Google Scholar
Ulmschneider, P., Musielak, Z.E. & Fawzy, D.E. 2001b, A&A, 374, 662.Google Scholar
Ulmschneider, P., Theurer, J. & Musielak, Z.E. 1996, A&A, 315, 212.Google Scholar
Ulmschneider, P., Theurer, J., Musielak, Z.E. & Kurucz, R. 1999, A&A, 347, 243.Google Scholar
Ulmschneider, P., Zähringer, K. & Musielak, Z.E. 1991, A&A, 241, 625.Google Scholar
Unno, W., & Kato, S. 1962, Publ. Astr. Soc. Japan, 14, 417.Google Scholar
Weiss, N.O. 1994, in Lectures on Solar and Planetary Dynamos, eds. Proctor, M.R.E., Gilbert, A.D., Cambridge Uni. Press, 59.Google Scholar
Wood, B.E., Linsky, J.L., & Ayres, T.R. 1997, ApJ, 478, 745.Google Scholar