Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T12:59:47.023Z Has data issue: false hasContentIssue false

H2-Bearing Damped Lyman-α Systems as Tracers of Cosmological Chemical Evolution

Published online by Cambridge University Press:  26 May 2016

M. T. Murphy
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
S. J. Curran
Affiliation:
School of Physics, University of New South Wales, Sydney 2052, Australia
J. K. Webb
Affiliation:
School of Physics, University of New South Wales, Sydney 2052, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical abundances in damped Lyman-α systems (DLAs) show more than 2 orders of magnitude variation at a given epoch, possibly because DLAs arise in a wide variety of host galaxies. This could significantly bias estimates of chemical evolution. We explore the possibility that DLAs in which H2 absorption is detected may trace cosmological chemical evolution more reliably since they may comprise a narrower set of physical conditions. The 9 known H2 absorption systems support this hypothesis: metallicity exhibits a faster, more well-defined evolution with redshift than in the general DLA population. The dust-depletion factor and, particularly, H2 molecular fraction also show rapid increases with decreasing redshift. We comment on possible observational selection effects which may bias this evolution. Larger samples of H2-bearing DLAs are clearly required and may constrain evolution of the UV background and DLA galaxy host type with redshift.

Type
Part 2. Origin
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Baker, A. C., Mathlin, G. P., Churches, D. K., & Edmunds, M. G. 2000, in ESA SP, Vol. 445, ed. Favata, F., Kaas, A., & Wilson, A., 21.Google Scholar
Boissier, S. 2003, in Carnegie Observatories Astrophysics Series, Vol. 4, Origin and Evolution of the Elements, ed. McWilliam, A. & Rauch, M. Google Scholar
Briggs, F. H., de Bruyn, A. G., & Vermeulen, R. C. 2001, A&A, 373, 113.Google Scholar
Briggs, F. H., Wolfe, A. M., Turnshek, D. A., & Schaeffer, J. 1985, ApJ, 293, 387.Google Scholar
Curran, S. J., Webb, J. K., Murphy, M. T., & Carswell, R. F. 2003, Phys. Rev. Lett., submitted, preprint (astro-ph/0311357).Google Scholar
de la Varga, A., Reimers, D., Tytler, D., Barlow, T., & Buries, S. 2000, A&A, 363, 69.Google Scholar
Ellison, S. L., Yan, L., Hook, I. M., Pettini, M., Wall, J. V., & Shaver, P. 2001, A&A, 379, 393.Google Scholar
Fall, S. M., Pei, Y. C., & McMahon, R. G. 1989, ApJ, 341, L5.Google Scholar
Hou, J. L., Boissier, S., & Prantzos, N. 2001, A&A, 370, 23.Google Scholar
Kanekar, N., & Chengalur, J. N. 2003, A&A, 399, 857.Google Scholar
Kulkarni, V. P., & Fall, S. M. 2002, ApJ, 580, 732.CrossRefGoogle Scholar
Le Brun, V., Bergeron, J., Boisse, P., & Deharveng, J. M. 1997, A&A, 321, 733.Google Scholar
Ledoux, C., Petitjean, P., & Srianand, R. 2003, MNRAS, 348, 209 (L03).CrossRefGoogle Scholar
Levshakov, S. A., Molaro, P., Centurión, M., D'Odorico, S., Bonifacio, P., & Vladilo, G. 2000, A&A, 361, 803.Google Scholar
Levshakov, S. A., et al. 2001, in Deep Fields, ed. Cristiani, S., Renzini, A., & Williams, R., ESO Astrophysics Symposia Series (Berlin: Springer), 334.Google Scholar
Lu, L., Sargent, W. L. W., Barlow, T. A., Churchill, C. W., & Vogt, S. S. 1996, ApJS, 107, 475.CrossRefGoogle Scholar
Petitjean, P., Srianand, R., & Ledoux, C. 2000, A&A, 364, L26.Google Scholar
Petitjean, P., Srianand, R., & Ledoux, C. 2002, MNRAS, 332, 383.CrossRefGoogle Scholar
Pettini, M., King, D. L., Smith, L. J., & Hunstead, R. W. 1995, in QSO Absorption Lines, ed. Meylan, G., ESO Astrophysics Symposia, 71.Google Scholar
Prochaska, J. X. 2003, ApJ, 582, 49.CrossRefGoogle Scholar
Prochaska, J. X., Gawiser, E., Wolfe, A. M., Castro, S., & Djorgovski, S. G. 2003, ApJ, 595, L9.CrossRefGoogle Scholar
Prochaska, J. X., & Wolfe, A. M. 1997, ApJ, 487, 73.CrossRefGoogle Scholar
Reimers, D., Baade, R., Quast, R., & Levshakov, S. A. 2003, A&A, 410, 785.Google Scholar
Ryan-Weber, E. V., Webster, R. L., & Staveley-Smith, L. 2003, MNRAS, 343, 1195.Google Scholar
Schaye, J. 2001, ApJ, 562, L95.CrossRefGoogle Scholar
Srianand, R., Petitjean, P., & Ledoux, C. 2000, Nature, 408, 931.CrossRefGoogle Scholar
Vladilo, G., Bonifacio, P., Centurión, M., & Molaro, P. 2000, ApJ, 543, 24.CrossRefGoogle Scholar
Wolfe, A. M. 2001, in ASP Conf. Ser. Vol. 230, Galaxy Disks and Disk Galaxies, ed. Funes, J. G. & Corsini, E. M. (San Francisco: ASP), 619.Google Scholar