Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T01:55:49.088Z Has data issue: false hasContentIssue false

Ground-Based Observations of Mars and Venus Water Vapor during 1972 and 1973

Published online by Cambridge University Press:  14 August 2015

E. S. Barker*
Affiliation:
University of Texas, McDonald Observatory, Fort Davis, Tex., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Venus water vapor line at 8197.71 Å has been monitored at several positions on the disk of Venus and at phase angles between 22° and 91°. Variations in the abundance have been found with both position and time. The total two-way transmission has varied from less than 5 to 77 μ of water vapor. Comparisons will be made between the water vapor abundances, presence of UV features, and the CO2 abundances determined from near simultaneous observations of CO2 bands at the same positions on the disk of Venus.

The amount of Martian atmospheric water vapor has been monitored during the past two years at McDonald Observatory using the échelle coudé scanner of the 272 cm reflector. Two periods of the Martian year have been monitored. The first period was during and after the great 1971 dust storm (L8 = 280° to 20° or summer in the southern hemisphere). The results obtained will be compared to the Mariner 9 IRIS and Mars 3 observations made during the same period.

During the second period (L8 = 124° to 266°) observations were made to follow the seasonal latitudinal and diurnal changes in the water vapor abundance in the Martian atmosphere. The water vapor abundance declines from a maximum of 20–35 μm at L8 = 125° to the 5–15 μm level at L8 = 180°. Then it remained relatively constant until L8 = 250° when the increase to 20–25 μm occurred in the southern latitudes. Studies of the latitudinal and diurnal water vapor distributions indicate the location of maximum and minimum abundances for this season are positively correlated with surface temperature variations.

Type
Part II Terrestrial Planets
Copyright
Copyright © Reidel 1974 

References

Barker, E. S.: 1971, Bull. Am. Astron. Soc. 3, 277 (abstract).Google Scholar
Barker, E. S.: 1973, Bull. Am. Astron. Soc. 5, 300 (abstract).Google Scholar
Barker, E. S. and Schorn, R. A.: 1973, Bull. Am. Astron. Soc. 5, 301 (abstract).Google Scholar
Barker, E. S., Schorn, R. A., Woszczyk, A., Tull, R. G., and Little, S. J.: 1970, Science 170, 1308.Google Scholar
Baum, W. A.: 1973, personal communication.Google Scholar
Baum, W. A. and Martin, L. J.: 1973, Bull. Am. Astron. Soc. 5, 296 (abstract).Google Scholar
Farmer, C. B.: 1971, Icarus 15, 190.CrossRefGoogle Scholar
Fink, U., Larson, H. P., Kuiper, G. P., and Poppen, R. R.: 1972, Icarus 17, 617.Google Scholar
Hanel, R., Conrath, B., Hovis, W., Kunde, V., Lowman, W., McGuire, E., Pearl, J., Pirraglia, J., Prabhakara, C., and Schlachtman, B.: 1972, Icarus 17, 423.Google Scholar
Hunt, G. E.: 1972a, J. Quant. Spectrosc. Radiat. Transfer 12, 405.Google Scholar
Hunt, G. E.: 1972b, Bull. Am. Astron. Soc. 4, 360 (abstract).Google Scholar
Jansson, P. A. and Korb, C. L.: 1968, J. Quant. Spectrosc. Radiat. Transfer 8, 1399.Google Scholar
Kunde, V. G.: 1973, Bull. Am. Astron. Soc. 5, 297 (abstract).Google Scholar
Larson, L. P., Fink, U., and Michel, G.: 1973, Bull. Am. Astron. Soc. 5, 297 (abstract).Google Scholar
Margolis, J. S. and Hunt, G. E.: 1972, Bull. Am. Astron. Soc. 4, 359 (abstract).Google Scholar
Moroz, V. I. and Ksanfomaliti, : 1972, Icarus 17, 408.CrossRefGoogle Scholar
Moroz, M. Ya. and Petrov, G. I.: 1973, Icarus 19, 163.Google Scholar
Owen, T.: 1969, Astrophys. J. 150, 121.Google Scholar
Owen, T. and Mason, H. P.: 1969, Science 165, 893.Google Scholar
Rank, K. H., Fink, U., Foltz, J. V., and Wiggins, T. A.: 1964, Astrophys. J. 140, 366.Google Scholar
Schorn, R. A. and Barker, E. S.: 1973, Bull. Am. Astron. Soc. 5, 300 (abstract).Google Scholar
Schorn, R. A., Barker, E. S., Gray, L. D., and Moore, R. C.: 1969, Icarus 10, 98.Google Scholar
Schorn, R. A., Farmer, C. B., and Little, S. J.: 1969, Icarus 11, 283.CrossRefGoogle Scholar
Schorn, R. A., Spinrad, H., Moore, R. C., Smith, H. J., and Giver, L. P.: 1967, Astrophys. J. 147, 743.Google Scholar
Spinrad, H., Munch, G., and Kaplan, L. D.: 1963, Astrophys. J. 137, 1319.CrossRefGoogle Scholar
Traub, W. B. and Carleton, N. P.: 1973, Bull. Am. Astron. Soc. 5, 299 (abstract).Google Scholar
Traub, W. B. and Carleton, N. P.: 1974, this volume, p. 223.Google Scholar
Tull, R. G.: 1970, Icarus 13, 43.Google Scholar
Tull, R. G.: 1972, in Iaustsen, S. and Reiz, A. (eds.), Proc. ESO/CERN Conference on Auxiliarylnstrumentation, Geneva, p. 259.Google Scholar
Tull, R. G. and Barker, E. S.: 1972, Bull. Am. Astron. Soc. 4, 372 (abstract).Google Scholar
Wells, D.: 1972, Publ. Astron. Soc. Pacific 84, 203.Google Scholar
Woodman, J. H. and Barker, E. S.: 1973, Icarus, 19, 327.Google Scholar
Young, L. D. G., Young, A. T., Young, J. W., and Bergstralh, J. T.: 1973, Astrophys. J. 181, L5.Google Scholar