Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T22:23:44.051Z Has data issue: false hasContentIssue false

Grains, or Molecules? Thermal, or non-Thermal?

Published online by Cambridge University Press:  23 September 2016

John R. Barker
Affiliation:
Department of Atmospheric, Oceanic and Space Sciences Space Physics Research Laboratory The University of Michigan Ann Arbor, MI 48109-2143
Isabelle Cherchneff
Affiliation:
Department of Atmospheric, Oceanic and Space Sciences Space Physics Research Laboratory The University of Michigan Ann Arbor, MI 48109-2143

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of size and energy on infrared fluorescence (IRF) and on chemical reaction rates are investigated, using polycyclic aromatic hydrocarbons (PAHs) as examples. The range of validity of the Thermal Approximation (TA) is examined. It is found that for properties that have a near-linear dependence on the internal energy, the TA provides an adequate description of the non-thermal, time-dependent processes associated with ultraviolet photon absorption. Since IRF at high energy is nearly linear, the TA is adequate for IRF at high excitation energies, but care must be taken, because the TA fails at low energies. The TA is never adequate for chemical reactions under these conditions.

Type
Section II: The Overidentified Infrared Emission Features
Copyright
Copyright © Kluwer 1989 

References

Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1985, Ap. J., 290, L25.Google Scholar
Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1987a, in Physical Processes in Interstellar Clouds, eds. Morfill, G. E., and Scholer, M., (Dordrecht: Reidel), p. 305.Google Scholar
Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1987b, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A. & d'Hendecourt, L. B., and Boccara, N., (Dordrecht: Reidel), p. 255.Google Scholar
Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1987c, in Interstellar Processes, eds. Hollenbach, D. J., and Thronson, H. A., (Dordrecht: Reidel), p. 471.Google Scholar
Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R. 1988, Ap, J., submitted.Google Scholar
Barker, J. R. 1983, Chem. Phys., 77, 301.Google Scholar
Barker, J. R. 1984, J. Phys. Chem., 88, 11.Google Scholar
Barker, J. R., Allamandola, L. J., and Tielens, A. G. G. M. 1987, Ap. J., 315, L61.Google Scholar
Bondybey, V. I. 1984, Ann. Rev. Phys. Chem., 35, 591.CrossRefGoogle Scholar
Cherchneff, I., and Barker, J. R. 1989, in Interstellar Dust Contributed Papers, eds. Tielens, A. G. G. M. and Allamandola, L. J., NASA CP-3036.Google Scholar
Davidson, N. 1962, Statistical Mechanics, (McGraw Hill Book Company, Inc., New York).Google Scholar
d'Hendecourt, L. B., Léger, A., Boissel, P., and Désert, F. X. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 207.Google Scholar
Duley, W. W. 1989, in IAU Symposium 135, Interstellar Dust, eds. Allamandola, L. J. and Tielens, A. G. G. M., (Dordrecht: Kluwer), p. 141.Google Scholar
Durana, J. F., and McDonald, J. D. 1977, J. Chem. Phys., 64, 2518.Google Scholar
Forst, W. 1973, Theory of Unimolecular Reactions, (New York: Academic Press).Google Scholar
Herzberg, G. 1945, Infrared and Raman Spectra, (Princeton: Van Nostrand).Google Scholar
Kiefer, J. H., Mizerka, L. J., Patel, M. R., and Wei, H. C. 1985, J. Phys. Chem., 89, 2013.CrossRefGoogle Scholar
Léger, A., Boissel, P., Désert, F. X., and d'Hendecourt, L. 1988, Astr. Ap., submitted.Google Scholar
Léger, A.d'Hendecourt, L., and Defourneau, D. 1988, Astr. Ap., submitted.Google Scholar
Léger, A., and d'Hendecourt, L. B. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., d'Hendecourt, L. B., and Boccara, N., (Dordrecht: Reidel), 223.Google Scholar
Léger, A., and Puget, J. L. 1984, Astr. Ap., 137, L5.Google Scholar
Omont, A. 1986, Astr. Ap., 164, 159.Google Scholar
Oref, I., and Rabinovitch, B. S. 1979, Acc. Chem. Res., 12, 166.CrossRefGoogle Scholar
Puget, J. L., Léger, A., and Boulanger, F. 1985, Astr. Ap., 142, L19.Google Scholar
Robinson, P. J., and Holbrook, K. A. 1972, Unimolecular Reactions, (New York: Wiley Intersciences).Google Scholar
Sellgren, K. 1984, Ap. J., 277, 623.Google Scholar
Shi, J., Bernfeld, D., and Barker, J. R. 1988, J. Chem. Phys., 88, 6211.Google Scholar
Stein, S. E., and Rabinovitch, B. S. 1973, J. Chem. Phys., 58, 2438.Google Scholar
Tielens, A. G. G. M., Allamandola, L. J., and Barker, J. R. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, eds. Léger, A., and d'Hendecourt, L. B., (Dordrecht: Reidel), p. 273.Google Scholar
Whitten, G. Z., and Rabinovitch, B. S. 1963, J. Chem. Phys., 38, 2466.CrossRefGoogle Scholar