Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T14:32:28.455Z Has data issue: false hasContentIssue false

The Globular Cluster Population of X-ray Binaries

Published online by Cambridge University Press:  04 August 2017

Frank Verbunt
Affiliation:
Max Planck Institut für, Extraterrestrische Physik, 8046 Garching bei München, Federal Republic of Germany
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey 08540, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss formation mechanisms for low-mass X-ray binaries in globular clusters. We apply the most efficient mechanism, tidal capture in close two-body encounters between neutron and main-sequence stars, to the clusters of our galaxy. The observed number of X-ray sources in these can be explained if the birth velocities of neutron stars are higher than estimated from velocity measurements of radiopulsars, or if the initial mass function steepens at high masses. We perform a statistical test on the distribution of X-ray sources with respect to the number of close encounters in globular clusters, and find satisfactory agreement between the tidal capture theory and observation, apart from the presence of low-mass X-ray binaries in four clusters with a very low encounter rate: Ter 1, Ter 2, Gr 1 and NGC 6712.

EXOSAT observations indicate that some dim globular cluster sources may be less luminous than hitherto assumed, and support the view that the brighter dim sources may be soft X-ray transients in quiescence.

Type
II. Accretion Powered Pulsars
Copyright
Copyright © Reidel 1987 

References

Blaauw, A. 1985. In: Birth and Evolution of Massive Stars and Stellar Groups, eds. Boland, W. & van Woerden, H., Reidel, Dordrecht, p.211.CrossRefGoogle Scholar
Burke, J.A. 1967. Mon. Not. R. astr. Soc. 136, 389.Google Scholar
Fabian, A.C., Pringle, J.E. & Rees, M.J. 1975, Mon. Not. R. astr. Soc. 172, 15p.Google Scholar
Gunn, J.E. & Griffin, R.F. 1979, Astron. J. 84, 752.Google Scholar
Hertz, P. & Grindlay, J.E. 1983, Astrophys. J. 275, 105.Google Scholar
Hills, J.G. 1976, Mon. Not. R. astr. Soc. 175, 1p.CrossRefGoogle Scholar
Hut, P. & Verbunt, F. 1983, Nature 301, 587.Google Scholar
Katz, J.I. 1975, Nature 253, 698.Google Scholar
Lee, H.M. & Ostriker, J.P. 1986. Preprint.Google Scholar
Lightman, A.P. & Grindlay, J.E. 1982. Astrophys. J. 262, 145.CrossRefGoogle Scholar
Lyne, A.G., Anderson, B. & Salter, M.J. 1982, Mon. Not. R. astr. Soc. 201, 503.Google Scholar
Motz, L. 1952, Astrophys. J. 115, 562.Google Scholar
Press, W.H. & Teukolsky, S.A. 1977. Astrophys. J. 213, 183.Google Scholar
Rappaport, S., Verbunt, F. & Joss, P.C. 1983, Astrophys. J. 275, 713.Google Scholar
Rood, R.T. 1972, Astrophys. J. 177, 681.Google Scholar
Schwarzschild, M. 1958, Structure and Evolution of the Stars, Princeton University Press.Google Scholar
Sutantyo, W. 1975, Astron. Astrophys. 44, 227.Google Scholar
Tinsley, B.M. 1974, Publ. Astr. Soc. Pac. 86, 554.Google Scholar
Van der Woerd, H. & Van den Heuvel, E.P.J. 1984, Astron. Astrophys. 132, 361.Google Scholar
Verbunt, F., Van Paradijs, J. & Elson, R. 1984, Mon. Not. R. astr. Soc. 210, 899.Google Scholar
Verbunt, F., Shafer, R.A., Jansen, F., Arnaud, K.A. & Van Paradijs, J. 1986, Astron. Astrophys. in press.Google Scholar
Webbink, R.F. 1985, in: Dynamics of star clusters, IAU Symp. No. 113, eds. Goodman, J. & Hut, P., Reidel, Dordrecht, p.541.Google Scholar
White, N.E., Kaluzienski, J.L. & Swank, J.H., 1984. In: High Energy Transients in Astrophysics, ed. Woosley, S.E., American Institute of Physics, New York, p.31.Google Scholar