Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T14:56:11.288Z Has data issue: false hasContentIssue false

Gamma-rays from Solar Flares

Published online by Cambridge University Press:  25 May 2016

R. Ramaty
Affiliation:
NASA/GSFC, Greenbelt, MD 20771, U.S.A.
N. Mandzhavidze
Affiliation:
NASA/GSFC and USRA, Greenbelt, MD 20771, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gamma-ray emission is the most direct diagnostic of energetic ions and relativistic electrons in solar flares. Analysis of solar flare gamma-ray data has shown: (i) ion acceleration is a major consequence of flare energy release, as the total flare energy in accelerated particles appears to be equipartitioned between ≳ 1 MeV/nucleon ions and ≳ 20 keV electrons, and amounts to an important fraction of the total energy release; (ii) there are flares for which over 50% of the energy is in a particles and heavier ions; (iii) in both impulsive and gradual flares, the particles that interact at the Sun and produce gamma rays are essentially always accelerated by the same mechanism that operates in impulsive flares, probably stochastic acceleration through gyroresonant wave particle interaction; and (iv) gamma-ray spectroscopy can provide new information on solar abundances, for example the site of the FIP-bias onset and the photospheric 3He abundance. We propose a new technique for the investigation of mass motion and mixing in the solar atmosphere: the observations of gamma-ray lines from long-term radioactivity produced by flare accelerated particles.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Akimov, V. V., et al. 1991, in Proc. of 22nd ICRC, eds. O'Sullivan, D. et al. (Dublin: Dublin Institute for Advanced Studies), 3, 73.Google Scholar
Barat, C., et al. 1994, ApJ, 425, L109.CrossRefGoogle Scholar
Chupp, E. L. 1990, Physica Scripta, T18, 15.Google Scholar
Chupp, E. L., et al. 1973, Nature, 241, 333.CrossRefGoogle Scholar
Oliver, E. W., Kahler, S. W., & Vestrand, W. T. 1993, Proc. of 23rd ICRC, eds. Leahy, D. A. (Calgary: University of Calgary), 3, 91.Google Scholar
Dunphy, P. P., et al. 1999, Solar Phys., 187, 45.Google Scholar
Guessoum, N., Ramaty, R., & Lingenfelter, 1991, ApJ, 378, 170.CrossRefGoogle Scholar
Hua, X.-M., & Lingenfelter, R. E. 1987, Solar Phys., 107, 351.CrossRefGoogle Scholar
Kanbach, G., et al. 1993, A&AS, 97, 349.Google Scholar
Kozlovsky, B., Lingenfelter, R. E., & Ramaty, R. 1987, ApJ, 316, 801.CrossRefGoogle Scholar
Kozlovsky, B., & Ramaty, R. 1974, ApJ, 191, L43.CrossRefGoogle Scholar
Lin, R. P., et al. 1998, in Proc. of SPIE, 3442, Missions to the Sun II, ed. Korendyke, C. M. (Bellingham: SPIE), 2.CrossRefGoogle Scholar
Mandzhavidze, N., & Ramaty, R. 1998, in Highlights of Astronomy, ed. Andersen, J. (Dordrecht: Kluwer), 11B, 759.CrossRefGoogle Scholar
Mandzhavidze, N., Ramaty, R., Bertsch, D. L., & Schneid, E. J. 1996, in AIP Conf. Proc., 374, High Energy Solar Physics, eds. Ramaty, R., et al. (New York: AIP), 225.Google Scholar
Mandzhavidze, N., Ramaty, R., & Kozlovsky, B. 1997, ApJ, 489, L99.CrossRefGoogle Scholar
Mandzhavidze, N., Ramaty, R., & Kozlovsky, B. 1999, ApJ, 518, 918.CrossRefGoogle Scholar
Miller, J. A. 1998, Space Sci. Rev., 86, 79.CrossRefGoogle Scholar
Murphy, R. J., Dermer, C. D., & Ramaty, R. 1987, ApJS, 63, 721.CrossRefGoogle Scholar
Murphy, R. J., et al. 1997, ApJ, 490, 883.CrossRefGoogle Scholar
Murphy, R. J., Ramaty, R., Kozlovsky, B., & Reames, D. V. 1991, ApJ, 371, 793.CrossRefGoogle Scholar
Murphy, R. J., Share, G. W., Letaw, J. R., & Forrest, D. J. 1990, ApJ, 358, 298.CrossRefGoogle Scholar
Ramaty, R. 1986, in The Physics of the Sun, ed. Sturrock, P. A. (Dordrecht: Reidel), 293.Google Scholar
Ramaty, R., & Mandzhavidze, N. 1993, in AIP Conf. Proc., 280, Compton Gamma Ray Observatory, eds. Friedlander, M. et al. (New York: AIP), 643.Google Scholar
Ramaty, R., Mandzhavidze, N., Barat, C., & Trottet, G. 1997, ApJ, 479, 458.CrossRefGoogle Scholar
Ramaty, R., Mandzhavidze, N., & Kozlovsky, B. 1996, in AIP Conf. Proc., 374, High Energy Solar Physics, eds. Ramaty, R. et al. (New York: AIP), 172.Google Scholar
Ramaty, R., Mandzhavidze, N., Kozlovsky, B., & Murphy, R. J. 1995, ApJ, 445, L193.Google Scholar
Ramaty, R., Mandzhavidze, N., Kozlovsky, B., & Skibo, J. G. 1993, Adv. Space Res., 13, no. 9, 275.CrossRefGoogle Scholar
Ramaty, R., Schwartz, R. A., Enome, S., & Nakajima, H. 1994, ApJ, 436, 941.CrossRefGoogle Scholar
Reames, D. V. 1995, Adv. Space Res., 15, no. 7, 41.CrossRefGoogle Scholar
Richard, O., et al. 1998, A&A, 338, 756.Google Scholar
Rieger, E. 1989, Solar Phys., 121, 323.CrossRefGoogle Scholar
Ryan, J. M., & McConnell, M. M. 1996, in AIP Conf. Proc., 374, High Energy Solar Physics, eds. Ramaty, R. et al. (New York: AIP), 200.Google Scholar
Share, G. H., & Murphy, R. J. 1995, ApJ, 452, 933.CrossRefGoogle Scholar
Share, G. H., & Murphy, R. J. 1997, ApJ, 485, 409.CrossRefGoogle Scholar
Share, G. H., & Murphy, R. J. 1998, ApJ, 508, 876.CrossRefGoogle Scholar
Share, G. H., & Murphy, R. J. 1999, in Proc. of 26th ICRC, eds. Kieda, D., Salamon, M., & Dingus, B. (Salt Lake City: University of Utah), 6, 13.Google Scholar
Vestrand, W. T., & Forrest, D. J. 1993, ApJ, 409, L69.CrossRefGoogle Scholar
Wang, H. T., & Ramaty, R. 1974, Solar Phys., 36, 129.CrossRefGoogle Scholar
Yoshimori, M. 1990, ApJS, 73, 227.CrossRefGoogle Scholar
Yoshimori, M. 1994, ApJS, 90, 639.CrossRefGoogle Scholar