Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:35:54.132Z Has data issue: false hasContentIssue false

Gamma-ray Emission from Pulsar Outer Magnetospheres

Published online by Cambridge University Press:  25 May 2016

K. Hirotani*
Affiliation:
National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the γ-ray emission from an outer-gap accelerator around a rotating neutron star. Assuming the existence of global currents in the magnetosphere, the charge depletion causes a large electric field along the magnetic field lines. This electric field accelerates migratory electrons and positrons which radiate gamma-rays via curvature radiation. These gamma-rays, in turn, produce yet more radiating particles by colliding with the X-rays, leading to a pair-production cascade. Imposing a gap-closure condition that a single pair produces one pair in the gap, on average, we explicitly solve the strength of the acceleration field and demonstrate how the peak energy and the luminosity of the curvature-radiated GeV photons and the cutoff energy and luminosity of Compton-scattered TeV photons depend on such parameters as the surface temperature, the rotational frequency, and the magnetic moment. It is demonstrated that both the GeV and TeV emissions of Geminga will be harder than those of B1055-52, B0656+14, and Vela, and that the TeV fluxes are too small to be observed by current ground-based telescopes.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Beskin, V. S., Istomin, Y. N., & Par'ev, V. I. 1992, Sov. Astron., 36(6), 642.Google Scholar
Cheng, K. S., Ho, C., & Ruderman, M. 1986a, ApJ, 300, 500.Google Scholar
Cheng, K. S., Ho, C., & Ruderman, M. 1986b, ApJ, 300, 522.Google Scholar
Chiang, J., & Romani, R. W. 1992, ApJ, 400, 629.Google Scholar
Daugherty, J. K., & Harding, A. K. 1982, ApJ, 252, 337.Google Scholar
Daugherty, J. K., & Harding, A. K. 1996, ApJ, 458, 278.Google Scholar
Harding, A. K., Tademaru, E., & Esposito, L. S. 1978, ApJ, 225, 226.CrossRefGoogle Scholar
Hirotani, K., & Okamoto, I. 1998, ApJ, 497, 563.Google Scholar
Hirotani, K., & Shibata, S. 1999a, MNRAS 308, 54 (Paper I).Google Scholar
Hirotani, K., & Shibata, S. 1999b MNRAS 308, 67 (Paper II).Google Scholar
Hirotani, K., & Shibata, S. 1999c, PASJ 51, 683 (Paper III).Google Scholar
Romani, R. W. 1996, ApJ, 470, 469.Google Scholar
Sturner, S. J., Dermer, C. D., & Michel, F. C. 1995, ApJ, 445, 736.Google Scholar
Zhang, L., & Cheng, K. S. 1997, ApJ, 487, 370.Google Scholar