Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T09:35:50.807Z Has data issue: false hasContentIssue false

The Galactic Evolution of Beryllium

Published online by Cambridge University Press:  25 May 2016

Ann Merchant Boesgaard*
Affiliation:
University of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hi 96822 U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The abundance of beryllium has been determined in unevolved stars over a range metal abundances in order to enhance our understanding of the chemical evolution of our Galaxy, cosmic-ray theory, and cosmology. Observations of 27 stars have been made with Keck I with HIRES at high spectral resolution (45,000) and high signal-to-noise ratios (60 - 110 typically). We find a remarkably linear relationship between log N(Be/H) and [Fe/H] with a slope of 0.96 (±0.04). Similarly, the relationship between log N(Be/H) and [O/H] is linear with a slope of 1.45 (±0.04). Beryllium increases at the same rate as Fe, but much faster than O. This provides constraints for and insights into models of Galactic chemical evolution. There is some evidence for an intrinsic spread in Be at a given [O/H] or [Fe/H]. There is no evidence of a plateau in Be at the lowest metallicities down to log N(Be/H) = —13.5.

Type
5. Abundance of Beryllium and Boron
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197 CrossRefGoogle Scholar
Boesgaard, A. M. & King, J. R. 1993, AJ, 106, 2309 CrossRefGoogle Scholar
Boesgaard, A. M., Deliyannis, C. P., King, J. K., Ryan, S. G., Vogt, S. S. & Beers, T. C. 1999a, AJ, 117, 1549 CrossRefGoogle Scholar
Boesgaard, A. M., King, J. K., Deliyannis, C. P. & Vogt, S. S. 1999b, AJ, 117, 492 CrossRefGoogle Scholar
Deliyannis, C. P., Boesgaard, A. M., King, J. R., & Duncan, D. 1995, Ninth Cambridge Workshop on Cool Stars eds. Pallavicini, R. & Dupree, A., ASPCS, 109, 679 Google Scholar
Deliyannis, C. P., Boesgaard, A. M., Stephens, A., King, J. K., Vogt, S. S. & Keane, M. 1998, ApJ, 498, L147 CrossRefGoogle Scholar
King, J. R., Deliyannis, C. P., & Boesgaard, A. M. 1997, ApJ, 478, 778 CrossRefGoogle Scholar
Gilmore, G., Edvardsson, B., & Nissen, P. E. 1991, ApJ, 378, 17 CrossRefGoogle Scholar
Gilmore, G., Gustafsson, B., Edvardsson, B., & Nissen, P. E. 1992, Nature, 357, 379 CrossRefGoogle Scholar
Kurucz, R. L. 1993, private communication Google Scholar
Malaney, R. A. & Mathews, G. J. 1992, Phys. Rep., 229, 147 Google Scholar
Molaro, P., Bonifacio, P., Castelli, F., and Pasquini, L. 1997, A&A, 319, 593 Google Scholar
Rebolo, R., Molaro, P., and Beckman, J. E. 1988, A&A, 192, 192 Google Scholar
Reeves, H., Fowler, W. A., Hoyle, F. 1970, Nature, 226, 727 CrossRefGoogle Scholar
Ryan, S. G., Norris, J. E. & Bessell, M. S. 1991, AJ, 102, 303 CrossRefGoogle Scholar
Ryan, S. G., Norris, J. E., Bessell, M. S., & Deliyannis, C. P. 1992, ApJ, 388, 184 CrossRefGoogle Scholar
Vogt, S. S. et al. 1994, Proc. SPIE, 2198, 362 CrossRefGoogle Scholar
Yoshii, Y., Kajino, T., & Ryan, S. G. 1997, ApJ, 485, 605 CrossRefGoogle Scholar