No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
The Fundamental Plane (FP) is one of the most important universal relations in early type galaxies because it contains valuable information about the formative and evolutionary process of galaxies (Djorgovski & Davis 1987, Dressler et al. 1987). The commonly used form of the scaling relation in the FP is described as Re = σAIB, where Re, σ, and I are effective radius, central velocity dispersion, and mean surface brightness of elliptical galaxies, respectively. The exponents A, B are considered to be 1.56 ± 0.07 and −0.94 ± 0.09 in the FP derived by K band photometry, respectively, and these values deviate significantly from the values A = 2.0 and B = −1.0 expected from virial theorem (Pahre et al. 1995; Djorgovski, Pahre, & de Carvalho 1996). This apparent deviation requires that the ratio of dynamical mass (M) to luminosity of elliptical galaxies (L) depends on M as M/L ∝ Mα (α = 0.12 ± 0.03 for K band). Possible interpretations for the required dependence of M/L on M are generally considered to be divided into the following two. One is that the required dependence of M/L on M results from the fact that the mean stellar age and metalicity of elliptical galaxies depend systematically on M. The other is that the required dependence reflects the M dependence of structural and kinematical properties of elliptical galaxies (“nonhomology”). Although we should not neglect the importance of stellar populations in generating the M dependence of the M/L (Renzini & Ciotti 1993), we here consider that the origin of the required M dependence of M/L is closely associated with the structural and kinematical properties dependent on M or L in elliptical galaxies.