Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T04:47:02.355Z Has data issue: false hasContentIssue false

From the Tip of the AGB Towards a Planetary: A Hydrodynamical Simulation

Published online by Cambridge University Press:  25 May 2016

D. Schönberner
Affiliation:
Astrophysikalisches Institut Potsdam, D-14482 Potsdam, Germany
M. Steffen
Affiliation:
Astrophysikalisches Institut Potsdam, D-14482 Potsdam, Germany
J. Stahlberg
Affiliation:
Astrophysikalisches Institut Potsdam, D-14482 Potsdam, Germany
K. Kifonidis
Affiliation:
Astrophysikalisches Institut Potsdam, D-14482 Potsdam, Germany
T. Blöcker
Affiliation:
Astrophysikalisches Institut Potsdam, D-14482 Potsdam, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a first exploratory investigation of the dynamical evolution of a dusty stellar wind envelope along the upper AGB and its transformation into a planetary nebula. We find the existence of AGB stars with detached shells to be a natural consequence of the mass-loss variations during a thermal pulse. It is also demonstrated that due to the large dynamical effects caused by the ionizing radiation field and the fast wind of the central star, it is impossible to deduce the AGB mass loss history from the planetary's density and velocity distribution. The structure of the halo, however, is still determined by the AGB mass loss history. The rapid decline of mass loss expected in the aftermath of thermal pulses leads to extended shells of low densities and explains halos with sharp boundaries.

Type
Session X — Nucleosythesis and Evolution
Copyright
Copyright © Kluwer 2000 

References

Blöcker, T. 1995, A&A, 297, 727 Google Scholar
Chan, S. J. & Kwok, S. 1988, ApJ, 334, 362 Google Scholar
Chu, Y.-H. 1989, in IAU Symp. 131: Planetary Nebulae, ed. Torres-Peimbert, S. (Kluwer), p. 105 Google Scholar
Chu, Y.-H., Jacoby, G. H. & Arendt, R. 1987, ApJ Supp., 64, 529 Google Scholar
Ivezić, Ž. & Elitzur, M. 1995, ApJ, 445, 415 Google Scholar
Kerschbaum, F. & Hron, J. 1996, A&A, 308, 489 Google Scholar
Marten, H. & Schönberner, D. 1991, A&A, 248, 590 Google Scholar
Marten, H. & Szczerba, R. 1997, A&A, 325, 1132 Google Scholar
Olofsson, H., Bergman, P., Eriksson, K. & Gustafsson, B. 1996, A&A, 311, 587 Google Scholar
Pauldrach, A., Puls, J., Kudritzki, R. P., Méndez, R. H. & Heap, S. R. 1988, A&A, 207, 123 Google Scholar
Plait, P. & Soker, N. 1990, AJ, 99, 1883 Google Scholar
Reimers, D. 1977, in Problems in Stellar Atmospheres and Envelopes, ed. Baschek, B., Kegel, W.H. and Traving, G. (Springer), p. 229 Google Scholar
Tuchman, Y. & Barkat, Z. 1980, ApJ, 242, 199 Google Scholar
Yorke, H. W. & Krügel, E. 1977, A&A, 54, 183 Google Scholar
Zijlstra, A., Loup, C., Waters, L.B.F.M. k. de Jong, T. 1992, A&A, 265, L5 Google Scholar