Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T03:33:02.090Z Has data issue: false hasContentIssue false

Formation and destruction of dust grains in circumstellar regions

Published online by Cambridge University Press:  04 August 2017

Yu. A. Fadeyev*
Affiliation:
Astronomical Council USSR Academy of Sciences Pyatnitskaya Str. 48 Moscow 109017, USSR

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The existence of circumstellar dust in late-type stars is connected with stellar pulsations since periodic shocks accompanying pulsations seem to be the most probable mechanism of the gas density increase needed for condensation of dust particles in outer layers of the stellar atmosphere. Most abundant solid materials formed in O-rich stars are forsterite (or enstatite), silicon monoxide and iron, whereas in C-rich stars these are carbon, silicon carbide, magnesium sulphur and iron. Application of the homogeneous nucleation theory shows that condensation proceeds at extremely high departures from thermal equilibrium due to a very long time between collisions of condensable monomers. The most efficient mechanism of destruction of dust grains is thermal evaporation caused by variations of the stellar effective temperature.

Type
Circumstellar Dust and Chemistry
Copyright
Copyright © Reidel 1987 

References

Barlow, M.J.: 1978, Monthly Not. Roy. Astron. Soc. 183, 367 Google Scholar
Blander, M., and Katz, J.; 1967, Geochim. Cosmochim. Acta 31, 1025 Google Scholar
Day, K.L., and Donn, B.: 1978, Astrophys. J. (Letters) 222, L45 Google Scholar
Deasy, H., and Butler, C.J.: 1985, preprint Google Scholar
Draine, B.T., and Salpeter, E.E.: 1977, J. Chem. Phys. 67, 2230 CrossRefGoogle Scholar
Draine, B.T.: 1979, Astrophys. Space Sci. 65, 313 Google Scholar
Fadeyev, Yu.A.: 1982, Astrophys. Space Sci. 86, 143 Google Scholar
Feder, J., Russel, K.C., Lothe, J., and Pound, G.M.: 1966, Adv. Phys. 15, 111 Google Scholar
Gehrz, R.D., and Woolf, N.J.: 1970, Astrophys. J. (Letters) 161, L213 Google Scholar
Gilman, R.C.: 1969, Astrophys. J. (Letters) 155, L185 Google Scholar
Goebel, J.H., and Moseley, S.H.: 1985, Astrophys. J. (Letters) 250, L35 Google Scholar
Hoyle, F., and Wiclkramasinghe, N.C.: 1962, Monthly Not. Roy. Astron. Soc. 124, 417 Google Scholar
Jones, T.W., Ney, E.P., Stein, W.A.: 1981, Astrophys. J. 250, 324 Google Scholar
King, D.S.: 1980, Space Sci. Rev. 27, 519 Google Scholar
Lefevre, J.: 1979, Astron. and Astrophys. 72, 61 Google Scholar
Lewis, J.S., Barshay, S.S., and Noyes, B.: 1979, Icarus 37, 190 Google Scholar
Lloyd Evans, T.: 1985, Monthly Not. Roy. Astron. Soc. 217, 493 Google Scholar
Lord, H.C. III: 1965, Icarus 4, 279 Google Scholar
Nuth, J.A., and Donn, B.: 1982a, Astrophys. J. (Letters) 257, L103 Google Scholar
Nuth, J.A., and Donn, B.: 1982b, J. Chem. Phys. 77, 2639 CrossRefGoogle Scholar
Nuth, J.A., and Donn, B.: 1983a, J. Chem. Phys. 78, 1618 Google Scholar
Nuth, J.A., and Donn, B.: 1983b, J. Geophys. Res. 88, Supplement, A847 Google Scholar
Nuth, J.A., Moseley, S.H., Silverberg, R.F., Goebel, J.H., and Moore, W.J.: 1985, Astrophys. J. (Letters) 220, L41 Google Scholar
Tabak, R.G., Hirth, J.P., Meyrick, G., and Roark, T.P.: 1975, Astrophys. J. 196, 457 Google Scholar
Unno, W.: 1965, Publ. Astron. Soc. Japan 17, 205 Google Scholar
Wehner, G.K.: 1958, Phys. Rev. 112, 1120 Google Scholar
Wickramasinghe, N.C.: 1972, Monthly Not. Roy. Astron. Soc. 159, 269 Google Scholar
Wood, J.A. 1963, Icarus, 2, 152 Google Scholar
Wood, P.R.: 1974, Astrophys. J. 190, 609 Google Scholar
Zel'dovich, Ya.B.: 1942, J. Exp. Theor. Phys. 11/12, 525 Google Scholar