Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T12:37:34.576Z Has data issue: false hasContentIssue false

First Detection of 661 GHz 13CO J=6 →5: Large Amounts of Warm Molecular Gas

Published online by Cambridge University Press:  03 August 2017

U.U. Graf
Affiliation:
MPI für extraterrestrische Physik, Garching (FRG)
R. Genzel
Affiliation:
MPI für extraterrestrische Physik, Garching (FRG)
A.I. Harris
Affiliation:
MRAO, Cavendish Laboratory, Cambridge (UK)
R.E. Hills
Affiliation:
MRAO, Cavendish Laboratory, Cambridge (UK)
A.P.G. Russell
Affiliation:
MPI für extraterrestrische Physik, Garching (FRG) Joint Astronomy Centre, Hilo, Hawaii (USA)
J. Stutzki
Affiliation:
I. Physikalisches Institut, Universität zu Köln, Köln (FRG)

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Submillimeter and far-infrared observations of carbon monoxide (Jaffe, Harris, and Genzel 1987; Genzel, Poglitsch, and Stacey 1988; Schmid-Burgk et al. 1989; Boreiko, Betz, and Zmuidzinas 1989) have indicated the presence of warm, dense molecular gas near regions of recent star forming activity. Estimates based on the comparison of mid-J (submm) and high-J (far-IR) 12CO lines in M17 and S106 (Harris et al. 1987a) gave a lower limit of ≈1018 cm−2 (τ(12CO 7 →6) ≈ 1) to the CO column density of quiescent (Δv ≤ 10 km/s) gas at temperatures of at least 100 K and H2 densities of 104 to 106 cm−3. The mid-J 12CO lines are likely to be optically thick in most sources. In order to obtain a better estimate of the column densities, it is thus of great interest to observe isotopic mid-J CO lines, which are likely to be optically thin.

Type
Poster Sessions
Copyright
Copyright © Kluwer 1991 

References

Barnes, P. J., et al. 1989, Ap. J., 342, 883.CrossRefGoogle Scholar
Boreiko, R. T., Betz, A. L., and Zmuidzinas, J. 1989, Ap. J., 337, 332.CrossRefGoogle Scholar
Burton, M., Hollenbach, D., and Tielens, A. G. G. M. 1989, 22nd ESLAB Symposium, “Infrared Spectroscopy in Astronomy”.Google Scholar
Chernoff, D. F., Hollenbach, D. J., and McKee, C. F. 1982, Ap. J., 259, L97.CrossRefGoogle Scholar
Draine, B. T., and Roberge, W. G. 1984, Ap. J., 282, 491.CrossRefGoogle Scholar
Flower, D. R., and Launay, J. M. 1985, M.N.R.A.S., 214, 271.CrossRefGoogle Scholar
Genzel, R., Poglitsch, A., and Stacey, G. J. 1988, Ap. J., 333, L59.CrossRefGoogle Scholar
Graf, U. U. et al. 1990a, Ap. J. (Letters), in press.Google Scholar
Graf, U. U. et al. 1990b, in prep. Google Scholar
Harris, A. I., et al. 1987a, Ap. J., 322, L49.CrossRefGoogle Scholar
Harris, A. I., et al. 1987b, Internat. J. Infrared Millimeter Waves, Vol. 8, No. 8, p.857.CrossRefGoogle Scholar
Jaffe, D. T., Harris, A. I., and Genzel, R. 1987, Ap. J., 316, 231.CrossRefGoogle Scholar
Mezger, P. G., et al. 1988, Astr. Ap., 191, 44.Google Scholar
Moore, T. J. T., et al. 1989, M.N.R.A.S., 237, 1p.CrossRefGoogle Scholar
Schmid-Burgk, J., et al. 1989, Astr. Ap., 215, 150.Google Scholar
Sternberg, A. 1990, in prep. Google Scholar
Stutski, J., and Winnewisser, G. 1985, Astr. Ap., 148, 254.Google Scholar