Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:20:02.309Z Has data issue: false hasContentIssue false

Faint Object Classification Using Artificial Neural Networks

Published online by Cambridge University Press:  26 July 2016

M. Serra-Ricart*
Affiliation:
Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Artificial Neural Network techniques are applied to the classification of faint objects, detected in digital astronomical images, and a Bayesian classifier (the neural network classifier, NNC hereafter) is proposed. This classifier can be implemented using a feedforward multilayered neural network trained by the back-propagation procedure (Werbos 1974).

Type
Part Five: Image Detection, Cataloguing and Classification
Copyright
Copyright © Kluwer 1994 

References

Adorf, H.-M. and Meurs, E.J., 1988. In ‘Large-Scale Structure of the Universe: Observational and Analytical Methods’, eds. Seitter, W.C., Duerbeck, H.W. and Tacke, M., Springer-Verlag, Heidelberg, p. 315.Google Scholar
Angel, J.R.P., Wizinowich, P. and Lloyd-Hart, M., 1990. Nature, 348, 221.Google Scholar
Fu, K.S., 1980. Digital Pattern Recognition, in ‘Communication and Cybernetics’, ed. Fu, K.S., p. 10.CrossRefGoogle Scholar
Garrido, L. and Gaitan, V., 1991. International Journal of Neural Systems, 2, 221.CrossRefGoogle Scholar
Hu, M., 1962. IRE Trans. Inf. Theory, 2, 179.Google Scholar
Johnston, M.D. and Adorf, H.-M., 1992. Computers and Operations Research, 19, 209.CrossRefGoogle Scholar
Odewahn, S.C. et al., 1991. Astron. J., 103, 318.CrossRefGoogle Scholar
Serra-Ricart, M., Calbet, X., Garrido, Ll. and Gaitan, V., 1993a. Astron. J, 106, 1685.CrossRefGoogle Scholar
Serra-Ricart, M., Gaitan, V., Garrido, Ll. and Pérez-Fournon, I., 1993b. Astron. Astrophys., in press.Google Scholar
Serra-Ricart, M., Trapero, J., Beckman, J.E., Garrido, Ll. and Gaitan, V., 1993c. Mon. Not. R. astron. Soc., submitted.Google Scholar
Storrie-Lombardi, M.C., Lahav, O., Sodré, L. and Storrie-Lombardi, L.J., 1992. Mon. Not. R. astron. Soc., 259, 8p.CrossRefGoogle Scholar
Therrien, C.W., 1989. Decision Estimation and Classification, John Wiley & Sons, New York.Google Scholar
Tody, D., 1986. The IRAF Data Reduction and Analysis System, in ‘Instrumentation in Astronomy VI’, ed. Crawford, D.L. Proc. SPIE, 627, 733.CrossRefGoogle Scholar
Valdes, F., 1982a. Resolution Classifier, in ‘Instrumentation in Astronomy VI’, ed. Crawford, D.L. Proc. SPIE, 331, 465.Google Scholar
Valdes, F., 1982b. FOCAS Users' Manual (KPNO: Tucson).Google Scholar
Werbos, P.J., 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard University, Cambridge, Mass. Google Scholar
Yu, T.H. and Mitra, S.K., 1992. Journal of Electronic Imaging, 1, 68.Google Scholar