Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T15:39:05.577Z Has data issue: false hasContentIssue false

The Extended Radio Structure of Quasars

Published online by Cambridge University Press:  19 July 2016

Frazer N. Owen*
Affiliation:
National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Modern radio maps usually allow quasars to be recognized from their radio morphology alone. Most have strong central components, double lobed outer structure and one-sided jets connecting the inner and outer structures. The physics of the sources is poorly understood. The observed bending of the jets, the high minimum pressures observed, and the required energy supply to the lobes are major problems. However, the outstanding problem regarding the extended structure is whether or not this morphology is produced by special relativistic effects or the intrinsic activity level and physics of the radio sources.

Type
II. Continuum Emission
Copyright
Copyright © Reidel 1986 

References

Barthel, P. D. (1984). , Leiden University Google Scholar
Bridle, A. H. and Perley, R. A. (1984). Ann. Rev. Astron. Astrophys., 22, 319.Google Scholar
Biretta, J. A., Owen, F. N., and Hardee, P. E. (1983). Ap. J. (Letters), 274, L27.Google Scholar
Browne, I. A. W., Clark, R. R., Moore, P. K., Muxlow, T. W. B., Wilkinson, P. N., Cohen, M. H., and Porcas, R. W. (1982). Nature, 299, 788.Google Scholar
Christiansen, W. A., Pacholczyk, A. G., and Scott, J. S. (1977). Nature, 266, 593.Google Scholar
Fanaroff, B. L., and Riley, J. M., (1974). M.N.R.A.S., 101, 31p.Google Scholar
Gower, A. C., Gregory, P. C., Hutchings, J. B., and Unruh, W. G. (1982). Ap. J., 262, 478.Google Scholar
Hardee, P. E. (1984). Ap. J., 287, 523.Google Scholar
Hardee, P. E. (1986). submitted Google Scholar
Lind, K. R., and Blandford, R. D. (1985). Ap. J., 295, 358.CrossRefGoogle Scholar
Linfield, R., and Perley, R. A. (1984). Ap. J., 279, 60.Google Scholar
Neff, S. G., and Brown, R. L. (1984). A. J., 195, 195.Google Scholar
Orr, M. J. L. and Browne, I. W. A. (1982). M.N.R.A.S., 200, 1067 Google Scholar
Owen, F. N., and Puschell, J. J. (1984). A. J., 89, 932.Google Scholar
Owen, F. N., Puschell, J. J., and Laing, R. A. (1981). I.A.U. Symposium No. 97, 435.Google Scholar
Perley, R. A., Dreher, J. W., and Cowan, J. J. (1984). Ap. J. (Letters), 285, L35.Google Scholar
Potash, R. I., and Wardle, J. F. C. (1980). Ap. J., 239, 42.Google Scholar
Rudnick, L., and Edgar, B. K. (1984). Ap. J., 279, 74.Google Scholar
Rudnick, L., Sitko, M. L., and Stein, W. A. (1984). A. J., 89, 753.Google Scholar
Saikia, D. J. (1984). M.N.R.A.S., 208, 231.Google Scholar
Saikia, D. J. and Shastri, P. (1984). M.N.R.A.S., 211, 47.Google Scholar
Saikia, D. J., Shastri, P., Cornwell, T. J., and Banhatti, D. G. (1983). M.N.R.A.S., 203, 53P.Google Scholar
Scheuer, P. A. G., and Readhead, A. C. S. (1979). Nature, 277, 182.Google Scholar
Schilizzi, R. T., and deBruyn, A. G. (1983). Nature, 303, 26.Google Scholar
Wardle, J. F. C. and Potash, R. I. (1985). Physics of Energy Transport in Extragalactic Radio Sources, ed. Bridle, and Eilek, , (Green Bank, NRAO), p30.Google Scholar