Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T10:37:01.517Z Has data issue: false hasContentIssue false

Evolution of Turbulent Magnetic Fields – Approach to a Steady State

Published online by Cambridge University Press:  14 August 2015

S. Nagarajan*
Affiliation:
MATSCIENCE, Madras 20, India, and Université Libre de Bruxelles, Brussels, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically-conducting fluid is examined under varying kinematic conditions. It is found that the results of an earlier paper (Kraichnan and Nagarajan, 1967) can be reliably extended to a stage of evolution wherein the magnetic spectrum has reached local equipartition with the velocity. The transfer of the magnetic energy to smaller wavenumbers (larger scales) is considerable and significant. This result is highly pertinent to the turbulent dynamo question, which has been variously investigated recently. The relevance of the coupling of the rms magnetic field to the magnetic modes of all scales in deciding the efficiency of this transfer is discussed.

Type
Part V: Theories of Small Scale Magnetic Fields
Copyright
Copyright © Reidel 1971 

References

Biermann, L. and Schlüter, A.: 1951, Phys. Rev. 82, 863.Google Scholar
Fitremann, M. and Frisch, U.: 1969, Compt. Rend. Acad. Sci. Paris 268, 705.Google Scholar
Kraichnan, R. H.: 1958, Phys. Rev. 109, 1467.Google Scholar
Kraichnan, R. H.: 1959, J. Fluid Mech. 5, 497.Google Scholar
Kraichnan, R. H.: 1965, Phys. Fluids 7, 1723.Google Scholar
Kraichnan, R. H.: 1966, Phys. Fluids 8, 575.Google Scholar
Kraichnan, R. H.: 1966, Phys. Fluids 8, 1385.CrossRefGoogle Scholar
Kraichnan, R. H.: 1970, Phys. Fluids 13, 569.Google Scholar
Kraichnan, R. H. and Nagarajan, S.: 1967, Phys. Fluids 10, 859.Google Scholar
Krause, F.: 1968, Z. Angew. Math. Mech. 48, 333.Google Scholar
Krause, F. and Rädler, K.-H.: 1971, this volume, p. 770.Google Scholar
Moffatt, H. K.: 1970, J. Fluid Mech. 41, 435.Google Scholar
Nagarajan, S.: 1970, Proc. of the Symposium on Computing and Applications , Institute of Mathematical Sciences, Madras.Google Scholar
Nagarajan, S.: 1971, Phys. Fluids , in press.Google Scholar
Parker, E. N.: 1969, Astrophys. J. 157, 1119 and 1129.Google Scholar
Parker, E. N.: 1970, Astrophys. J. 160, 383.Google Scholar
Rädler, K. H.: 1968, Z. Naturforsch. 23a, 1841.Google Scholar
Robinson, D. C. and Rusbridge, M. G.: 1971, Phys. Fluids , in press.Google Scholar
Steenbeck, M., Krause, F., and Rädler, K. H.: 1966, Z. Naturforsch. 21a, 369.Google Scholar
Steenbeck, M. and Krause, F.: 1966, Z. Naturforsch. 21a, 1285.CrossRefGoogle Scholar
Steenbeck, M. and Krause, F.: 1967, Magn. Gidrodyn. 3, 19.Google Scholar
Vainshtein, S. I.: 1970, Zh. Eksperim. i Teor. Fiz. 58, 153 = Soviet Phys. JETP 31, 87.Google Scholar