Published online by Cambridge University Press: 14 August 2015
The dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically-conducting fluid is examined under varying kinematic conditions. It is found that the results of an earlier paper (Kraichnan and Nagarajan, 1967) can be reliably extended to a stage of evolution wherein the magnetic spectrum has reached local equipartition with the velocity. The transfer of the magnetic energy to smaller wavenumbers (larger scales) is considerable and significant. This result is highly pertinent to the turbulent dynamo question, which has been variously investigated recently. The relevance of the coupling of the rms magnetic field to the magnetic modes of all scales in deciding the efficiency of this transfer is discussed.