Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T02:49:33.581Z Has data issue: false hasContentIssue false

Evidence for Ice Meteoroids Beyond 2 AU

Published online by Cambridge University Press:  14 August 2015

H. Zook*
Affiliation:
SN6/NASA Johnson Space Center, Houston, TX 77058, U.S.A.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Humes et al. (1974) deduced from the P-10 (Pioneer 10) meteoroid penetration data that the spatial density of 2 × 10−9 g and larger meteoroids was nearly constant (or possibly increasing) with increasing heliocentric distances between 2 and 5 AU from the sun. With an assumed mass density of 0.5 g/cm3, P-10 particles (particles whose mass is ⪞ 2 × 10−9 g) would have a particle radius in excess of about 10 μm. The observation of a constant, or increasing, spatial density leads to some interesting conclusions regarding the processes that control the population of P-10 particles between 2 and 5 AU from the sun. We shall explore some of these processes below and shall obtain the result that the P-10 meteoroid data can be best understood if many of the penetrating meteoroids are made of ice.

Type
IV: The Interplanetary Dust Complex 2. Physical Properties
Copyright
Copyright © Reidel 1980 

References

Bertie, J. E., Labbé, H. J., and Whalley, E.: 1969, J. of Chemical Phys. 50, pp. 45014520.Google Scholar
Briggs, R. E.: 1962, Astron. J. 67, pp. 710723.Google Scholar
Cook, A. F.: 1978, Icarus 33, pp. 349360.Google Scholar
Delsemme, A. H. and Miller, D. C.: 1971, Planet. Space Sci. 19, pp. 12291257.Google Scholar
Dohnanyi, J. S.: 1978, in McDonnell, J.A.M. (Ed.), Cosmic Dust, John Wiley & Sons, Chichester, pp. 527605.Google Scholar
Hanner, M. S., Sparrow, J. G., Weinberg, J. L., and Beeson, D. E.: 1976, in Elsässer, H. and Fechtig, H. (Eds.), Interplanetary Dust and Zodiacal Light, Vol. 48, Lecture Notes in Physics, Springer-Verlag, Berlin, pp. 2935.Google Scholar
Humes, D. H., Alvarez, J. M., O'Neal, R. L., and Kinard, W. H.: 1974, J. Geophys. Res. 79, pp. 36773684.Google Scholar
Hundhausen, A. J.: 1972, Solar Wind and Coronal Expansion, Vol. 5 of Physics and Chemistry in Space, Ed. by Roederer, J., Springer-Verlag, Berlin.Google Scholar
Irvine, W. M. and Pollack, J. B.: 1968, Icarus 8, pp. 324360.Google Scholar
Lanzerotti, L. J., Brown, W. L., Poate, J. M., and Augustyniak, W. M.: 1978, Nature 272, pp. 431433.Google Scholar
McDonnell, J. A. M.: 1977, Proc. 8th Lunar Sci. Conf., Pergamon, New York, pp. 38353857.Google Scholar
Patashnick, H., Rupprecht, G., and Schuerman, D.: 1974, Nature 250, pp. 313314.Google Scholar
Patashnick, H. and Rupprecht, G.: 1975, Astrophys. J. Lett. 197, pp. 7982.Google Scholar
Patashnick, H. and Rupprecht, G.: 1977, Icarus 30, pp. 402412.Google Scholar
Whipple, F. L.: 1967, in Weinberg, J. L. (Ed.), The Zodiacal Light and the Interplanetary Medium, NASA SP-150, pp. 409426.Google Scholar
Wyatt, S. P. and Whipple, F. L.: 1950, Astrophys. J. 111, pp. 134141.Google Scholar