Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T09:00:54.432Z Has data issue: false hasContentIssue false

The Equation of State of Matter at Sub-Nuclear Density

Published online by Cambridge University Press:  14 August 2015

J. W. Negele*
Affiliation:
Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Mass. 02139, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An extremely simple form for the energy density of a nuclear many-body system is derived from the two-body nucleon-nucleon interaction. This theory, which yields excellent results for energies and density distributions of finite nuclei, is used to determine the ground state configuration of matter at sub-nuclear density. As the baryon density is increased, nuclei become progressively more neutron rich until neutrons eventually escape, yielding a Coulomb lattice of bound neutron and proton clusters surrounded by a dilute neutron gas. The clusters enlarge and the lattice constant decreases with increasing density, approaching a completely uniform state near nuclear density.

Type
Research Article
Copyright
Copyright © Reidel 1974 

References

Arponen, J.: 1971, University of Helsinki (preprint).Google Scholar
Barkat, Z., Buchler, J. R., and Ingber, L.: 1972 (to be published).Google Scholar
Baym, G. A., Pethick, C., and Sutherland, P.: 1971a, Astrophys. J. 170, 299.Google Scholar
Baym, G. A., Bethe, H. A., and Pethick, C. J.: 1971b, Nucl. Phys. A175, 225.Google Scholar
Bethe, H. A.: 1971, Ann. Rev. Nucl. Sci. 21, 93.Google Scholar
Bethe, H. A., Börner, G., and Sato, K.: 1970, Astron. Astrophys. 7, 279.Google Scholar
Brown, G. E. and Green, A. M.: 1969, Nucl. Phys. A173, 1.Google Scholar
Buchler, J. R. and Barkat, Z.: 1971a, Phys. Rev. Letters 27, 48.Google Scholar
Buchler, J. R. and Barkat, Z.: 1971b, Astrophys. Letters 7, 167.Google Scholar
Campi, X. and Sprung, D. W.: 1972, Nucl. Phys. A194, 401.Google Scholar
Hartle, J. B. and Thorne, K. S.: 1968, Astrophys. J. 153, 807.Google Scholar
Langer, W. D., Rosen, L. C., Cohen, J. M., and Cameron, A. G. W.: 1969, Astrophys. Space Sci. 5, 259.Google Scholar
Myers, W. D. and Swiatecki, W. J.: 1965, UCRL Report 11980.Google Scholar
Negele, J. W.: 1970, Phys. Rev. C1, 1260.Google Scholar
Negele, J. W. and Vautherin, D.: 1972, Phys. Rev. C5, 1472.Google Scholar
Pines, D.: 1970, Proc. of XVII International Conf. on Low Temperature Physics.Google Scholar
Ravenhall, D. G., Bennett, C. D., and Pethick, C. J.: 1972, Phys. Rev. Letters 28, 978.Google Scholar
Reid, R. V.: 1968, Ann. Phys. N.Y. 50, 411.Google Scholar
Siemens, P. J.: 1970, Nucl. Phys. A141, 225.Google Scholar
Siemens, P. J. and Pandharipande, V. R.: 1971, Nucl. Phys. A173, 561.Google Scholar
Skyrme, T. H. R.: 1959, Nucl. Phys. 9, 615.Google Scholar
Sprung, D. W. L.: 1972, Advances in Nuclear Physics (to be published).Google Scholar
Vautherin, D. and Brink, D. M.: 1972, Phys. Rev. C5, 626.Google Scholar
Yang, C. H. and Clark, J. W.: 1971, Nucl. Phys. A174, 49.Google Scholar