Article contents
Energetics, Collimation and Propagation of Galactic Protostellar Outflows
Views and Perspectives
Published online by Cambridge University Press: 25 May 2016
Abstract
Formation of jets in low-mass protostellar objects and young pre-main sequence stars is ultimately related to the existence of some gaseous disk around a rapidly rotating central object. This configuration has deep parallels to extragalactic systems such as radio galaxies and quasars. Rotating black holes are still thought to be the prime-mover behind the activity detected in centers of galaxies, while, in the case of protostellar jets, rapidly rotating stars and disks are responsible for the ejection of bipolar outflows. In both cases, magnetic fields are invoked for the acceleration, the collimation and propagation of these outflows. The ultimate rooting of these fields is still under debate. We discuss models where winds injected into rapidly rotating magnetospheres of the central object drive the outflows. From these considerations it follows that the jets of young stellar objects can only be produced magnetically and that their progagation is determined by their magnetic properties. Such jets have low Mach numbers ≃ 2 and their instabilities are dominated by the pinch mode. Knots closest to the source are attributed to compression by the time-dependent pinches. Multiple bow shocks occur on longer time-scales (a few thousand years) and are attributed to variations in the magnetospheric structure of the star, or the disk.
- Type
- III. Theoretical Models
- Information
- Copyright
- Copyright © Kluwer 1997
References
- 2
- Cited by