No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
Acceleration, propagation, and energy loss of particles energized in solar flares cannot be studied separately because their radiative signatures observed in the form of hard X-ray bremsstrahlung or radio gyrosynchrotron emission represent a convolution of all these processes. We analyze hard X-ray emission from solar flares using a kinematic model that includes free-streaming electrons (having an energy-dependent time-of-flight delay) as well as temporarily trapped electrons (which are pitch-angle scattered by Coulomb collisional scattering) to determine various physical parameters (trapping times, flux asymmetry, loss-cone angles, magnetic mirror ratios) in flare loops with asymmetric magnetic fields.