Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T00:47:55.849Z Has data issue: false hasContentIssue false

Dust and the Gas Phase Composition of Dense Clouds

Published online by Cambridge University Press:  23 September 2016

C. M. Walmsley*
Affiliation:
Max Planck Institut für Radioastronomie

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A review is given of our current knowledge of the gas phase abundance of interstellar molecules. A comparison is made between cold dust clouds, where presumably gas phase processes dominate the chemistry, and regions of high mass star formation such as Orion where both shocks and evaporation of dust grain mantles may play a role. In dust clouds, carbon rich molecules often show enhanced abundances, whereas in hot turbulent star formation regions, saturated species such as methanol and ammonia are often favored. In both types of source, there is evidence for abundance gradients and inhomogeneities. A probable cause is that the chemistry is far from a steady state situation. A useful diagnostic in such cases is the relative abundance of deuterated species and our current knowledge concerning deuterium fractionation is discussed. Recent results show that the observed degree of deuterium enhancement in species such as water, methanol, and ammonia in the Orion-KL region is much too great to be explained on the basis of normal gas phase chemistry. It is argued that a plausible explanation of the observations is that one is observing material which has recently been evaporated from dust grain mantles. One important consequence of this hypothesis is that molecular line observations may yield important information on the composition of the solid phase.

Type
Section III: Dust in Dense Clouds
Copyright
Copyright © Kluwer 1989 

References

Beichman, C. A., et al. 1986, Ap. J., 307, 337.CrossRefGoogle Scholar
Bell, M. B et al. 1988, Ap. J., 326, 924.CrossRefGoogle Scholar
Blake, G. A., Sutton, E. C., Masson, C. R., Phillips, T. G. 1987, Ap. J., 315, 621.Google Scholar
Brown, P. D., Charnley, S. B., Millar, T. J. 1988, M. N. R. A. S., 231, 409.Google Scholar
Brown, R. D., Rice, E. H. N. 1986, M. N. R. A. S., 223, 429.Google Scholar
d'Hendecourt, L. B., Allamandola, L., Greenberg, J. M. 1985, Astr. Ap., 152, 136.Google Scholar
Duley, W. W., Williams, D. A. 1984, Interstellar Chemistry, (London: Academic Press).Google Scholar
Goldsmith, P. F., Irvine, W.M., Hjalmarson, A., Ellder, J. 1986, Ap. J., 310, 383.CrossRefGoogle Scholar
Henkel, C. et al. 1987, Astr. Ap., 182, 299.Google Scholar
Herbst, E. 1982, Astr. Ap., 111, 767.Google Scholar
Herbst, E., Leung, C. 1988, Ap. J. Suppl., in press.Google Scholar
Irvine, W. M., Goldsmith, P. F., Hjalmarson, A. 1987 in Interstellar Processes, eds. Hollenbach, D. J., Thronson, H. A. (Dordrecht: Reidel), p 561.Google Scholar
Jacq, T., Jewell, P. R., Henkel, C., Walmsley, C.M, Baudry, A. 1988, Astr. Ap., 199, L5.Google Scholar
Langer, W. D., Graedel, T. 1988, Ap. J. Suppl., in press.Google Scholar
Lepp, S., Dalgarno, A. 1984, Ap. J., 287, L47.Google Scholar
Mauersberger, R., Henkel, C., Jacq, T., Walmsley, C. M. 1988, Astr. Ap., 194, L1.Google Scholar
Millar, T. J., Bennett, A., Herbst, E. 1988, Ap. J., in press.Google Scholar
Millar, T. J. 1988, in Molecular Astrophysics, ed. Hartquist, T. W., in press.Google Scholar
Moore, E. L., Langer, W. D., Huguenin, G. R. 1986, Ap. J., 306, 682.Google Scholar
Mundy, L. G., Scoville, N. Z., Baath, L. B., Masson, C. R., Woody, D. P. 1986, Ap. J., 304, L51.CrossRefGoogle Scholar
Myers, P. C. 1983, Ap. J., 270, 105.Google Scholar
Olano, C. A., Walmsley, C. M., Wilson, T. L. 1988, Astr. Ap., 196, 194.Google Scholar
Plambeck, R. L., Wright, M. H. C. 1987, Ap. J., 317, L101.Google Scholar
Plambeck, R. L., Wright, M. H. C. 1988, Ap. J., 330, L61.CrossRefGoogle Scholar
Tielens, A. G. G. M, Hagen, W. 1982, Astr. Ap., 114, 245.Google Scholar
Tielens, A. G. G. M 1983, Astr. Ap., 119, 177.Google Scholar
Tielens, A. G. G. M, Allamandola, L. J. 1987, in Physical Processes in Interstellar Clouds, NATO ASI Series, Vol 210, eds. Morfill, G. and Scholer, M., (Dordrecht: Reidel).Google Scholar
Walmsley, C. M., Wilson, T. L. 1984, in Nearby Molecular Clouds , ed. Serra, G., Lecture Notes in Physics 237, p 41.Google Scholar
Walmsley, C. M. 1985 in ESO-IRAM-ONSALA Workshop on (Sub) Millimeter Astronomy , ESO Conference and Workshop Proceedings, no 22, eds. Shaver, P. A. and Kjar, K., p 327.Google Scholar
Walmsley, C. M. 1986, in Proceedings of the Enrico Fermi School on Interstellar Dust and Related Topics, Varenna, July 1986, in press.Google Scholar
Walmsley, C. M. et al. 1987, Astr. Ap., 172, 311.Google Scholar
Watson, W. D. 1976, Rev. Mod. Phys., 48, 513.CrossRefGoogle Scholar
Watson, W. D. 1978, Ann. Rev. Astr. Ap., 16, 585.Google Scholar
Welch, W. J. 1988, Astroph. Lett. and Comm., 26, 181.Google Scholar
Wilson, T. L., Johnston, K. J., Henkel, C., Menten, K. M. 1988, Astr. Ap., in press.Google Scholar
Wootten, A. 1986, in IAU Symposium 120: Interstellar Chemistry, eds. Tarafdar, S. and Vardya, M., (Dordrecht: Reidel).Google Scholar