Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T08:23:15.492Z Has data issue: false hasContentIssue false

The Dual Life of RNA

Published online by Cambridge University Press:  19 September 2017

M. Meli
Affiliation:
Evolutionary Biochemistry and Molecular Adaptation, Jacques-Monod Institute, University Paris VI, Tour 43, 2 place Jussieu, 75251 Paris, France (E-mail: [email protected])
M-C. Maurel
Affiliation:
Evolutionary Biochemistry and Molecular Adaptation, Jacques-Monod Institute, University Paris VI, Tour 43, 2 place Jussieu, 75251 Paris, France (E-mail: [email protected])

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Molecular biology techniques have enabled us to prepare and select RNA aptamers that can bind specifically to small targets. RNA oligonucleotides can also be used as fluorescent probes. We have combined the two approaches to obtain Aptamer Beacons, in which molecular recognition is linked to the emission of an optical signal. These RNA biosensors could be used to detect directly the signatures of life in samples of mineral and extra-terrestrial material.

Type
Origins and Evolution of Life
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Frauendorf, C., & Jaschke, A. 2001, Bioorg. Med. Chem., 9, 2521 Google Scholar
Gesteland, R. F., Cech, T. R., & Atkins, J. F. 1999, in The RNA world, (N.Y.: Cold Spring Harbor Laboratory Press), 37 Google Scholar
Gilbert, W. 1986, Nature, 319, 618 CrossRefGoogle Scholar
Jeffares, D. C, Poole, A. M, & Penny, D. 1998, J. Mol. Evol., 46, 18 CrossRefGoogle Scholar
Joyce, G. F. 1994, Curr. Opin. Struct. Biol., 4, 331 CrossRefGoogle Scholar
Joyce, G. F., & Orgel, L. E. 1999, in The RNA world, (N.Y.: Cold Spring Harbor Laboratory Press), 49 Google Scholar
Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A., & Furste, J. P. 1996, Nat. Biotechnol., 14, 1112 Google Scholar
Maurel, M-C., & Ninio, J. 1987, Biochimie, 69, 551 CrossRefGoogle Scholar
Maurel, M-C., & Convert, O. 1990, Origins of Life Evol. Biosphere, 20, 43 Google Scholar
Maurel, M-C. 1992, J. Evol. Biol., 2, 173 Google Scholar
Meli, M., Albert-Fournier, B., & Maurel, M-C. 2001, Int Microbiol., 4, 5 Google Scholar
Meli, M., Vergne, J., Decout, J. L., & Maurel, M-C. 2002, J. Biol. Chem., 277, 2104 CrossRefGoogle Scholar
Meli, M., Vergne, J., & Maurel, M-C. 2003, J. Biol. Chem. 278, 9835 CrossRefGoogle Scholar
Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A., & Furste, J. P. 1996, Nat. Biotechnol., 14, 1116 Google Scholar
Orò, J. 1961, Nature, 191, 1193 CrossRefGoogle Scholar
Potyrailo, R. A., Conrad, R. C., Ellington, A. D., & Hieftje, G. M. 1998, Anal. Chem., 70, 3419 CrossRefGoogle Scholar
Stocks, P. G., & Schwartz, A. W. 1981, Geochimica et Cosmochimica Acta, 45, 563 CrossRefGoogle Scholar
Tuerk, C., & Gold, L. 1990, Science, 249, 505 Google Scholar
Wilson, D. S., & Szostak, J. W. 1999, Annu. Rev. Biochem., 68, 611 Google Scholar