Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T14:01:55.009Z Has data issue: false hasContentIssue false

Diffraction Limited Near Infrared Imaging of the Central Parsec of the Galaxy

Published online by Cambridge University Press:  19 July 2016

A. Eckart
Affiliation:
Max-Planck Institut für extraterrestrische Physik, 8046 Garching, Germany
R. Genzel
Affiliation:
Max-Planck Institut für extraterrestrische Physik, 8046 Garching, Germany
R. Hofmann
Affiliation:
Max-Planck Institut für extraterrestrische Physik, 8046 Garching, Germany
B.J. Sams
Affiliation:
Max-Planck Institut für extraterrestrische Physik, 8046 Garching, Germany
L.E. Tacconi-Garman
Affiliation:
Max-Planck Institut für extraterrestrische Physik, 8046 Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present deep 1.6 and 2.2 μm images of the central parsec of the Galaxy at a resolution of 0.15″. Most of the flux in earlier seeing limited images comes from about 340 unresolved stellar sources with K≤14. The IRS 16 and 13 complexes are resolved into about two dozen and half a dozen sources, a number of which are probably luminous hot stars. We confirm the presence of a blue near infrared object (K≈13) at the position of the compact radio source Sgr A. The spatial centroid of the source number distribution is consistent with the position of Sgr A but not with a position in the IRS 16 complex. The stellar surface density in the central 10″ is very well fitted by an isothermal cluster model with a well defined core radius. The derived core radius of all 340 sources is 0.15±0.05 pc. The central stellar density is a few times 107 M pc−3. Buildup of massive stars by merging of lower mass stars and collisional disruption of giant atmospheres are very probable processes in the central 0.2 pc.

Type
Imaging Results: Optical and Infrared
Copyright
Copyright © Kluwer 1994 

References

Bailey, M.E., 1980, M.N.R.A.S., 190, 217.CrossRefGoogle Scholar
DePoy, D.L. and Sharp, N.A., 1991, A. J., 101, 1324.CrossRefGoogle Scholar
Eckart, A., Genzel, R., Krabbe, A., Hofmann, R., van der Werf, P.P., Drapatz, S., 1992, Nature, 335, 526.CrossRefGoogle Scholar
Eckart, A., Genzel, R., Hofmann, R., Sams, B., Tacconi-Garman, L.E., 1993, Ap.J. (Letters), submitted. Google Scholar
Krabbe, A., Genzel, R., Drapatz, S. and Rotaciuc, V., 1991, Ap. J. (Letters), 382, L19.CrossRefGoogle Scholar
Krabbe, A., et al. 1993, in prep. Google Scholar
Forrest, W.J., Pipher, J.L. and Stein, W., 1986, Ap. J. (Letters), 301, L49.CrossRefGoogle Scholar
Lee, H.M., 1987, Ap. J., 319, 771.Google Scholar
Lee, H.M., 1990, in Dynamics of Dense Stellar Systems, ed. Merritt, D., Cambridge Univ. Press, p.105 Google Scholar
Lucy, L.B., 1974, A.J., 79, 745.CrossRefGoogle Scholar
Rieke, G.H., Rieke, M.J. and Paul, A.E., 1989, Ap. J., 336, 752.CrossRefGoogle Scholar
Sellgren, et al., 1990, Ap. J., 359, 112.CrossRefGoogle Scholar
Tollestrup, E.V., Capps, R.W. and Becklin, E.E., 1989, A. J., 98, 204.CrossRefGoogle Scholar