Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-15T08:06:52.207Z Has data issue: false hasContentIssue false

The dark matter content of lensing galaxies at 1.5 Re

Published online by Cambridge University Press:  26 May 2016

Paul L. Schechter
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA
Joachim Wambsganss
Affiliation:
Universität Potsdam, Institut für Physik, Am Neuen Palais 10, 14469 Potsdam, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many quasars that are gravitationally lensed exhibit flux ratio “anomalies” that cannot be explained under the hypothesis that the lensing potential is smooth on scales smaller than 1 kpc. Micro-lensing by stars is a natural source of granularity in the lens potential. the character of the expected fluctuations due to Micro-lensing depends sensitively on the relative surface densities of micro-lenses (stars) and smoothly distributed (dark) matter. Observations of flux ratios may therefore be used to infer the ratio of stellar to dark matter along the line of sight – typically at impact parameters 1.5 times the half light radius. Several recently discovered systems have anomalies that would seem to be explained by Micro-lensing only by demanding that 70-90% of the matter along the line of sight be smoothly distributed.

Type
Part 4: Lensing
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Agol, E. et al. 2000, ApJ, 545, 657.CrossRefGoogle Scholar
Chang, K. & Refsdal, S. 1979, Nature, 282, 561.CrossRefGoogle Scholar
Chiba, M. 2002, ApJ, 565, 17.Google Scholar
Dalal, N. & Kochanek, C. 2002, ApJ, 572, 25.Google Scholar
Granot, J., Schechter, P. L. & Wambsganss, J. 2003, ApJ, 583, 575.CrossRefGoogle Scholar
Inada, N. et al. 2003, preprint, astro-ph/0304377.Google Scholar
Keeton, C. R. 2001, preprint, astro-ph/0102340.Google Scholar
Kochanek, C. S. 2003, preprint, astro-ph/0307422.Google Scholar
Kravtsov, A. et al. 1999, ApJ, 522, 82.Google Scholar
Mao, S. & Schneider, P. 1998 MNRAS, 295, 587.Google Scholar
Marlow, D. R. et al. 1999, AJ, 118, 654.Google Scholar
Metcalf, R. B. & Madau, P. 2001, ApJ, 563, 9.CrossRefGoogle Scholar
Metcalf, R. B. & Zhao, H. 2002, ApJ, 567, L5.CrossRefGoogle Scholar
Moore, B. et al. 1999, ApJ, 524, L19.Google Scholar
Paczyński, B. 1986 ApJ 301, 503.Google Scholar
Schechter, P. L. & Wambsganss, J. 2002, ApJ, 580, 685.Google Scholar
Schechter, P. L. et al. 2003, ApJ, 584, 657.CrossRefGoogle Scholar
Vanderriest, C. et al. 1986 A&A, 158, L5.Google Scholar
Wambsganss, J. 1992, ApJ, 386, 19.Google Scholar
Wambsganss, J. 2001, PASA, 18, 207.Google Scholar
Wambsganss, J. & Paczyński, B. 1992, ApJ, 397, L1.Google Scholar
Weymann, R. J. et al. 1980, Nature, 285, 641.Google Scholar
Wisotzki, L. et al. 2003, preprint, astro-ph/0307147.Google Scholar
Witt, H. J. 1993, ApJ, 403, 530.Google Scholar
Woźniak, P. R. et al. 2002 ApJ, 540, L65.Google Scholar