Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T07:29:28.771Z Has data issue: false hasContentIssue false

Dark Matter Constraints from the Sagittarius Dwarf and Tail System

Published online by Cambridge University Press:  26 May 2016

Steven R. Majewski
Affiliation:
University of Virginia, Dept. of Astronomy, P.O. Box 3818, Charlottesville, VA 22903-0818, USA
David R. Law
Affiliation:
University of Virginia, Dept. of Astronomy, P.O. Box 3818, Charlottesville, VA 22903-0818, USA
Kathryn V. Johnston
Affiliation:
Wesleyan University, Dept. of Astronomy, Middletown, CT 06459-0123, USA
Michael F. Skrutskie
Affiliation:
University of Virginia, Dept. of Astronomy, P.O. Box 3818, Charlottesville, VA 22903-0818, USA
Martin D. Weinberg
Affiliation:
University of Massachusetts, Dept. of Physics & Astronomy, 517 Lederle GRC, Amherst, MA 01003 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

2MASS has provided a three-dimensional map of the > 360°, wrapped tidal tails of the Sagittarius (Sgr) dwarf spheroidal galaxy, as traced by M giant stars. With the inclusion of radial velocity data for stars along these tails, strong constraints exist for dynamical models of the Milky Way-Sgr interaction. N-body simulations of Sgr disruption with model parameters spanning a range of initial conditions (e.g., Sgr mass and orbit, Galactic rotation curve, halo flattening) are used to find parameterizations that match almost every extant observational constraint of the Sgr system. We discuss the implications of the Sgr data and models for the orbit, mass and M/L of the Sgr bound core as well as the strength, flattening, and lumpiness of the Milky Way potential.

Type
Part 6: The Galaxy
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bessell, M. S. & Brett, J. M. 1988, PASP, 100, 1134.Google Scholar
Font, A. S., Navarro, J. F., Stadel, J. & Quinn, T. 2001, ApJ, 563, L1.CrossRefGoogle Scholar
Hernquist, L. 1990, ApJ, 356, 359.CrossRefGoogle Scholar
Hernquist, L. & Ostriker, J. 1992, ApJ, 386, 375.Google Scholar
Ibata, R. A, Gilmore, G. & Irwin, M. J. 1994, Nature, 370, 194.Google Scholar
Ibata, R. A., & Lewis, G. F. 1998, ApJ, 500, 575.Google Scholar
Ibata, R. A., Lewis, G. F., Irwin, M. J. & Quinn, T. 2002, MNRAS, 332, 915.Google Scholar
Ibata, R., Lewis, G. F., Irwin, M., Totten, E. & Quinn, T. 2001, ApJ, 551, 294.CrossRefGoogle Scholar
Ibata, R. A., Wyse, R. F. G., GIlmore, G., Irwin, M. J., & Suntzeff, N. B. 1997, AJ, 113, 634 (I97).CrossRefGoogle Scholar
Johnston, K. V., Hernquist, L. & Bolte, M. 1996, ApJ, 465, 278.CrossRefGoogle Scholar
Johnston, K. V., Majewski, S. R., Siegel, M. H., Reid, I. N., & Kunkel, W. E. 1999, AJ, 118, 1719.CrossRefGoogle Scholar
Johnston, K. V., Spergel, D. N. & Haydn, C. 2002, ApJ, 570, 656 (JSH).Google Scholar
King, I. R. 1966, AJ, 71, 64.Google Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. 1999, ApJ, 522, 82.Google Scholar
Law, D. R., Johnston, K. V. & Majewski, S. R. 2003b, in prep. (Paper II).Google Scholar
Law, D. R., Majewski, S. R., Skrutskie, M. F. & Johnston, K. V. 2003a, in ASP Conf. Ser. Vol., Tidal Tails and Galactic Satellites, eds. Martinez-Delgado, D. & Prada, F., in press (astro-ph/0309567).Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., & Ostheimer, J. D. 2003a, ApJ, in press (astro-ph/0304198; MSWO).Google Scholar
Majewski, S. R., et al. 2003b, AJ, submitted (Paper I).Google Scholar
Miyamoto, M., & Nagai, R. 1975, PASJ, 27, 533.Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJ, 524, L19.Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493.Google Scholar
Sakamoto, T., Chiba, M., & Beers, T. C. 2003, A&A, 397, 899.Google Scholar
Sparke, L. S. 2002, in The Shapes of Galaxies and Their Dark Matter Halos, ed. Natarajan, P., (Singapore: World Scientific), p. 178.Google Scholar