Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T10:46:39.141Z Has data issue: false hasContentIssue false

Dark Matter and Cooling Flows

Published online by Cambridge University Press:  03 August 2017

B. J. Carr
Affiliation:
School of Mathematical Sciences, Queen Mary College, Mile End Road, London E1 4NS
K. M. Ashman
Affiliation:
School of Mathematical Sciences, Queen Mary College, Mile End Road, London E1 4NS

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmological arguments suggest that a large fraction of the baryons in the Universe are dark. Although the background dark matter required to make up the critical density would have to consist of some kind of elementary particle, the dark matter in galactic halos could be baryonic. In particular, we argue that it could consist of jupiters made in pregalactic or protogalactic cooling flows. These would be analagous to the cluster cooling flows observed at the present epoch but on a smaller scale.

Type
Research Article
Copyright
Copyright © Reidel 1988 

References

Allen, A.J., and Carr, B.J., 1987. Preprint.Google Scholar
Ashman, K.M., and Carr, B.J., 1987. Preprint.Google Scholar
Bond, J.R., Centrella, J., Szalay, A.S., and Wilson, J.R., 1984. Mon.Not.R.astr.Soc., 210, 515.Google Scholar
Blumenthal, G.R., Faber, S.M., Primack, J.R., and Rees, M.J., 1984. Nature, 311, 517.Google Scholar
Carr, B.J., and Lacey, C.G., 1987. Astrophys.J., 316, 23.Google Scholar
Carr, B.J., Bond, J.R., and Arnett, W.A., 1984. Astrophys.J., 277, 445.Google Scholar
Faber, S.M., and Gallagher, J.S., 1979. Ann.Rev.Astron.Astrophys., 17, 135.Google Scholar
Fabian, A.C., Nulsen, P.E.J., and Canizares, C.R., 1982. Mon.Not.R.astr.Soc., 201, 933.Google Scholar
Fabian, A.C., Nulsen, P.E.J., and Canizares, C.R., 1984. Nature, 310, 733.Google Scholar
Gilmore, G., and Hewitt, P., 1983. Nature, 306, 669.Google Scholar
Hegyi, D.J., and Olive, K.A., 1986. Astrophys.J., 303, 56.Google Scholar
Hoyle, F., 1953. Astrophys.J., 118, 513.Google Scholar
Ikeuchi, S., 1981. Pub.Astron.Soc.Japan, 33, 211.Google Scholar
Kaiser, N., 1984. Astrophys.J. Lett., 284, L9.Google Scholar
Lacey, C.G., and Ostriker, J.P., 1985. Astrophys.J., 299, 633.Google Scholar
McDowell, J., 1986. Mon.Not.R.astr.Soc., 223, 763.Google Scholar
Ostriker, J.P., and Cowie, L.L., 1981. Astrophys.J. Lett., 243, L127.Google Scholar
Peebles, P.J.E., and Dicke, R.H., 1968. Astrophys.J., 154, 891.Google Scholar
Sarazin, C.L., 1986. Rev.Mod.Phys., 58, 1.Google Scholar
Sarazin, C.L., and O'Connel, R.W., 1983. Astrophys.J., 268, 552.Google Scholar
Silk, J., Djorgovski, S., Wyse, R.F.G., and Gustavo, A.B., 1986. Preprint.Google Scholar
Turner, M.S., and Carr, B.J., 1987. Mod.Phys.Lett.A., 2, 1.CrossRefGoogle Scholar
Yang, J., Turner, M.S., Steigmann, G., Schramm, D.N., and Olive, K.A., 1984. Astrophys.J., 281, 493.Google Scholar
Zeldovich, Ya.B., 1970. Astr.Astrophys., 5, 84.Google Scholar