Article contents
Critical rates of stellar mass loss
Published online by Cambridge University Press: 14 August 2015
Extract
Many of the effects of mass loss on OB stars have now been explored. Mass loss will cause a star to be overluminous for its mass (though less luminous than a star of its original mass) and, for moderate mass-loss rates, the luminosity decreases at the same rate as the mass contained in the convective core decreases causing the main sequence lifetime to remain unchanged (Chiosi and Nasi 1974, 1978, Deloore, DeGreve and Lamers 1977, Dearborn, Blake, Hainebach and Schramm 1978). Mass loss can also expose layers where 14N has been enhanced via the CNO tricyle (Dearborn and Eggleton 1977) and, in extreme cases, can produce a stripped helium core resembling a Wolf-Rayet Star (Hartwick 1967). While many of these phenomena (in particular the composition change) are more sensitive to the total mass removed than the formalism used to represent the mass loss, significant differences will result for the same average mass-loss rate depending on whether the mass was removed early (near the ZAMS), or late (near core hydrogen depletion). In addition, there appears to be a critical mass loss rate which depends on initial mass and separates those models which continue to evolve in a relatively normal (though subluminous) manner, and those models which evolve to a Wolf-Rayet configuration.
- Type
- Session 6: Evolution with Mass Loss: Single Stars
- Information
- Symposium - International Astronomical Union , Volume 83: Mass Loss and Evolution of O-Type Stars , 1979 , pp. 349 - 356
- Copyright
- Copyright © Reidel 1979
References
- 2
- Cited by