Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T04:50:44.359Z Has data issue: false hasContentIssue false

Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima

Published online by Cambridge University Press:  26 May 2016

Ofer. Lahav*
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We generalise the procedure for joint estimation of cosmological parameters to allow freedom in the relative weights of various probes. This is done by including in the joint Likelihood function a set of ‘Hyper-Parameters’, which are dealt with using Bayesian considerations. The resulting algorithm is simple to implement. We illustrate the method by estimating the Hubble constant H0 from the recent Cosmic Microwave Background experiments Boomerang and Maxima. For an assumed flat Λ-CDM model with fixed parameters (n = 1, Ωm = 1 - Δ = 0.3, Ωbh2 = 0.03, Qrms = 18μK) we solve for a single parameter, H0 = 79 ± 4 km/sec/Mpc (95 % CL, random errors only), slightly higher but still consistent with recent results from Cepheids. We discuss how the ‘Hyper-Parameters’ approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters.

Type
Part IX: Putting it all together
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Bahcall, N. A., Ostriker, J. P., Perlmutter, S. & Steinhardt, P. J., 1999, Science, 284, 148.CrossRefGoogle Scholar
de Bernardis, P. et al., 2000, Nature, 404, 955.Google Scholar
Bishop, C. M., 1995, Neural Networks for Pattern Recognition , Oxford University Press, Oxford.Google Scholar
Bond, J. R., 1995, Cosmology and Large Scale Structure , Proc. Les Houches School, Session LX, August 1993. ed. Schaeffer, R., Elsevier Science Publishers, Netherlands.Google Scholar
Bond, J. R. et al., 2000, this volume (astro-ph/0011378).Google Scholar
Bridle, S. L., Eke, V. R., Lahav, O., Lasenby, A. N., Hobson, M. P., Cole, S., Frenk, C. S. & Henry, J. P., 1999, MNRAS, 310, 565.Google Scholar
Bridle, S. L., Zehavi, I., Dekel, A., Lahav, O., Lasenby, A. N. & Hobson, M. P., 2000, MNRAS, in press (astro-ph/0006170).Google Scholar
Bridle, S. L., 2000, PhD thesis, University of Cambridge.Google Scholar
Burles, S., Nollett, K. M. & Turner, M. S., 2000 (astro-ph/0008495).Google Scholar
Cash, W., 1979, ApJ, 228, 939.CrossRefGoogle Scholar
Diego, J. M. et al., 2000, submitted to MNRAS.Google Scholar
Douspis, M., Bartlett, J. G., Blanchard, A., Dour, M. Le, 2000, submitted to A&A.Google Scholar
Efstathiou, G., Bridle, S. L., Lasenby, A. N., Hobson, M. P., Ellis, R. S. 1999, MNRAS, 303, L47.CrossRefGoogle Scholar
Eisenstein, D. J., Hu, W. & Tegmark, M., 1999, ApJ, 518, 2.Google Scholar
Freedman, W. L., et al., 2000, ApJ, in press (astro-ph/0012376).Google Scholar
Gawiser, E. & Silk, J., 1998, Science, 280, 1405.CrossRefGoogle Scholar
Godwin, P. & Lynden-Bell, D. 1987, MNRAS, 229, 7.Google Scholar
Gull, S.F., 1989, in Maximum Entropy and Bayesian Methods , Cambridge 1988, ed. Skilling, J., p. 53, Dordrecht: Kluwer.CrossRefGoogle Scholar
Hanany, S. et al., 2000, submitted to ApJL (astro-ph/0005123).Google Scholar
Hu, W., Fukugita, M., Zaldarriaga, M. & Tegmark, M., 2000, submitted to ApJ (astro-ph/0006436).Google Scholar
Jaffe, et al., 2000, submitted to PRL (astro-ph/0007333).Google Scholar
Jefferys, H., 1939, Theory of Probability , Oxford University Press (1983 edition).Google Scholar
Lahav, O., Bridle, S. L., Hobson, M. P., Lasenby, A. N. & Sodr'e, L. Jr., 2000, MNRAS, 315, 45L.Google Scholar
Lewis, A., Challinor, A. & Lasenby, A. N. 2000, ApJ, in press (astro-ph/9911177).Google Scholar
Lineweaver, C. H. 1998, ApJ, 505, L69.Google Scholar
MacKay, D., 1992, Neural Computation, 4, 415.Google Scholar
Padin, S. et al, submitted to ApJ (astro-ph/0012211).Google Scholar
Press, W.H., 1996, in Unsolved Problems in Astrophysics , Proceedings of Conference in Honor of John Bahcall, ed. Ostriker, J. P., Princeton: Princeton University Press (astro-ph/9604126).Google Scholar
Seljak, U. & Zaldarriaga, M. 1996, ApJ, 469, 437.CrossRefGoogle Scholar
Sivia, D. S. 1996, Data Analysis A Bayesian Tutorial , Oxford University Press.Google Scholar
Tegmark, M. & Zaldarriage, M., 2000, preprint (astro-ph/0002091).Google Scholar
Webster, M., Bridle, S. L., Hobson, M. P., Lasenby, A. N., Lahav, O. & Rocha, G. 1998, ApJ Lett, 509, L65.CrossRefGoogle Scholar