Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T03:15:10.724Z Has data issue: false hasContentIssue false

Cosmic Microwave Background at Low Frequencies

Published online by Cambridge University Press:  26 May 2016

R. Subrahmanyan*
Affiliation:
Australia Telescope National Facility, CSIRO, Locked bag 194, Narrabri, NSW 2390, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The next generation low-frequency radio telescopes may probe cosmological models by means of observations of the cosmic microwave background (CMB). I discuss the prospects for observations of CMB imprints —- recombination lines from the epoch of recombination, μ distortions and angular temperature anisotropies —- at low frequencies. A future low-frequency radio telescope, like the proposed SKA, may be capable of attempting some difficult CMB measurements because of the large collecting area and large element numbers; however, this will require a telescope design that will allow specialized calibration strategies and will give emphasis to the control of spurious responses.

Type
Part 1: Radio Source Surveys and Cosmology
Copyright
Copyright © Astronomical Society of the Pacific 2002 

References

Bartlett, J.G. & Stebbins, A. 1991, ApJ, 371, 8 Google Scholar
Bensadoun, M., Bersanelli, M., De Amici, G., Kogut, A., Levin, S., Limon, M., Smoot, G.F., & Witebsky, C. 1993, ApJ, 409, 1 Google Scholar
Bernshtein, I.N., Bernshtein, D.N., & Dubrovich, V.K. 1997, Sov. Astron., 21, 409 Google Scholar
Burdyuzha, V.V. & Chekmezov, A.N. 1994, Astron. rep., 38, 297 Google Scholar
Burigana, C., Danese, L., & De Zotti, G. 1991, A&A, 246, 49 Google Scholar
Buries, S., Nottel, K.M., & Turner, M.S. 1999, astro-ph/9903300 Google Scholar
Daly, R. 1994, ApJ, 371, 14 Google Scholar
Dell'Antonio, I.P. & Rybicki, G.B. 1993, in Observational Cosmology, ed. Chincarini, G., Iovino, A., Maccacaro, T. & Maccagni, D., ASP Conf. Ser. Vol. 51, 548 Google Scholar
Dubrovich, V.K. 1975, Sov. Astron. Lett., 1, 196 Google Scholar
Dubrovich, V.K. & Stolyarov, V.A. 1995, A&A, 302, 635 Google Scholar
Fixen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A., & Wright, E.L. 1996, ApJ, 486, 623 Google Scholar
Griffiths, L.M., Barbosa, D., & Liddle, A.R. 1999, MNRAS, 308, 854 Google Scholar
Hu, W., Scott, D., & Silk, J. 1994, ApJ, 430, L5 Google Scholar
Jones, B.J.T. & Wyse, R.F.G. 1985, A&A, 149, 144 Google Scholar
Lyubarsky, Y.E. & Sunyaev, R.A. 1983, A&A, 123, 171 Google Scholar
Peebles, P.J.E. 1968, ApJ, 153, 1 Google Scholar
Raghunathan, A. & Subrahmanyan, R. 2000, in preparation Google Scholar
Shaver, P.A., Windhorst, R.A., Madau, P., & de Bruyn, A.G. 1999, A&A, 345, 380 Google Scholar
Silk, J. & Stebbins, A. 1983, ApJ, 269, 1 Google Scholar
Sironi, G., Limon, M., Marcellino, G., Bonelli, G., Bersanelli, M., Conti, G., & Reif, K. 1990, ApJ, 357, 301 CrossRefGoogle Scholar
Staggs, S.T., Jarosik, N.C., Wilkinson, D.T., & Wollack, E.J. 1996, ApJ, 458, 407 Google Scholar
Stankevich, K.S., Wielebinski, R., & Wilson, W.E. 1970, Aust. J. Phys., 23, 529 Google Scholar
Windhorst, R.A., Fomalont, E.B., Partridge, R.B., & Lowenthal, J.D. 1993, ApJ, 405, 498 Google Scholar