Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T05:45:30.507Z Has data issue: false hasContentIssue false

Cosmic Magnetic Fields and Superconducting Strings

Published online by Cambridge University Press:  19 July 2016

Christopher Thompson*
Affiliation:
130-33 Caltech Pasadena, CA 91125 U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A cosmic magnetic field may play a significant role in the formation of galaxies and large scale structure. In particular, a fossil field of present strength ~ 10−9 Gauss is an essential ingredient in the superconducting string model of galaxy formation (Ostriker, Thompson and Witten 1986 (OTW); Thompson 1988a). We discuss the mechanism by which a current is induced on a superconducting string, including recent work on the reconnection of magnetic field lines near the string (Kulsrud and Thompson 1989). A substantial amount of baryonic plasma is trapped on the magnetic field lines which close around the string. The current on a loop almost certainly does not undergo exponential dynamo amplification; an oscillating superconducting loop emits a relativistic MHD wind (Thompson 1988a). Decaying superconducting loops fill most of the intergalactic medium with a relativistic, magnetized fluid. In this model, the gas between galaxies is highly clumped and strongly magnetized, the field strength approaching 1 μG. The maximum energy of cosmic ray protons accelerated at string-driven shocks is ~ 1020 eV (Madau and Thompson 1989).

Type
10. Magnetic Fields at High Redshifts and in the Early Universe
Copyright
Copyright © Kluwer 1990 

References

Bell, A. R. 1978, M. N. R. A. S. , 182, 147.Google Scholar
Blandford, R. D. 1988, in Supernova Remnants and the Interstellar Medium , Roger, R. S. and Landecker, T. L. eds. (Cambridge University Press: Cambridge) p. 309.Google Scholar
Blandford, R. D., and Ostriker, J. P. 1978, Ap. J. , 221, L29.CrossRefGoogle Scholar
Bertschinger, E. 1986, Ap. J. , 304, 154.Google Scholar
Chudnovsky, E. M., Field, G. B., Spergel, D. N., and Vilenkin, A. 1987, Phys. Rev. D , 34, 944.Google Scholar
Goldreich, P., and Julian, W. H., 1969, Ap. J. , 160, 971.Google Scholar
Gunn, J. E., and Peterson, B. A. 1965, Ap. J. , 142, 1633.Google Scholar
Hillas, A. M. 1984, Ann. Rev. Astr. Ap. , 22, 425.Google Scholar
Ikeuchi, S., and Ostriker, J. P. 1986, Ap. J. , 301, 522.Google Scholar
Kibble, T. W. B. 1976, J. Phys. A , 9, 1387.Google Scholar
Kulsrud, R. M., and Thompson, C. 1989, in preparation.Google Scholar
Madau, P., and Thompson, C. 1989, in preparation.Google Scholar
Mijic, M. 1989, Phys. Rev. D , 39, 2864.Google Scholar
Ostriker, J. P., Thompson, C., and Witten, E. 1986, Phys. Lett. , B180, 231.Google Scholar
Ostriker, J. P., and Thompson, C. 1987, Ap. J. , 323, L97.CrossRefGoogle Scholar
Spergel, D., Press, W. H., and Scherrer, R. J. 1989, Phys. Rev. D 39, 379.CrossRefGoogle Scholar
Steidel, C. and Sargent, W. L. W. 1987, Ap. J. , 318, L11.CrossRefGoogle Scholar
Thompson, C. 1988a, Ph.D. Thesis, Princeton.Google Scholar
Thompson, C. 1988b, in The Epoch of Galaxy Formation , Frenk, C. S. et al. eds. (Kluwer: Dordrecht).Google Scholar
Thompson, C. 1989, in preparation.Google Scholar
Thompson, C., and Madau, P. 1989, in STSCI preprint Workshop on Ultra-hot Plasmas and Electron-Positron Pairs in Astrophysics , Zdziarski, A. A. and Kazanas, D. eds., p. 48.Google Scholar
Thompson, C., Weinberg, D. H., and Juskiewicz, R. 1989, preprint.Google Scholar
Vilenkin, A. 1980, Phys. Rev. Lett. , 46, 1169, 1496(E).Google Scholar
Vishniac, E. 1983, Ap. J. , 274, 152.Google Scholar
Welter, G. L., Perry, J. J., and Kronberg, P. P. 1984, Ap. J. , 279, 19.Google Scholar
Witten, E. 1985a, Nucl. Phys. , B249, 557.CrossRefGoogle Scholar
Witten, E. 1985b, Phys. Lett. , B153, 243.CrossRefGoogle Scholar
Wolfe, A. M. 1988, in The Epoch of Galaxy Formation , Frenk, C. S. et al. eds. (Kluwer: Dordrecht).Google Scholar