Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T19:20:18.923Z Has data issue: false hasContentIssue false

Common-Envelope Evolution, the Formation of CVs, LMXBs, and the Fate of HMXBs

Published online by Cambridge University Press:  25 May 2016

R.E. Taam*
Affiliation:
Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent three-dimensional studies of the common-envelope phase of binary evolution have provided important insights into its theoretical description. The role of non-axisymmetric effects associated with gravitational torques is essential for understanding all aspects of the evolution. For successful ejection of the common envelope and survival of the remnant compact binary it is required that the orbital period of the progenitor system is long, so that one of the components of the system is in the red giant or red supergiant stage of evolution. Not only must there be sufficient energy released from the orbit to unbind the common envelope, but it is also necessary that a sufficiently steep density gradient exist above the evolved core of the giant. If these conditions are satisfied, the time scale for orbital decay in the region above the core exceeds the time scale for mass loss from the common envelope and merger is avoided. The implications of these results for the formation of cataclysmic variables (CVs), low-mass X-ray binaries (LMXBs), and the descendants of high-mass X-ray binaries (HMXBs) are discussed.

Type
1 Binary Evolution
Copyright
Copyright © Kluwer 1996 

References

Appel, A.W. 1985, SIAM, J. Sci. Stat. Comput. 6, 85.CrossRefGoogle Scholar
Barnes, J.E. & Hut, P. 1986, Nat 324, 446.Google Scholar
Bhattacharya, D. & Van den Heuvel, E.P.J. 1991, Physics Reports 203, 1.Google Scholar
Biehle, G.T. 1991, ApJ 380, 167.CrossRefGoogle Scholar
Bodenheimer, P. & Taam, R.E. 1984, ApJ 280, 771.Google Scholar
Cannon, R.C. 1993, MNRAS 263, 817.Google Scholar
Cannon, R.C. et al. 1992, ApJ 386, 206.Google Scholar
Chevalier, R.A. 1993, ApJ 411, L33.Google Scholar
Counselman, C.C. 1973, ApJ 180, 307.Google Scholar
De Kool, M. 1987, Ph.D. thesis, University of Amsterdam.Google Scholar
De Loore, C., de Greve, J.P. & De Cuyper, J.P. 1975, Ap&SS 36, 219.Google Scholar
Flannery, B.P. & Van den Heuvel, E.P.J. 1975, A&A 39, 61.Google Scholar
Fujimoto, M.Y. 1987, A&A 176, 53.Google Scholar
Gingold, R.A. & Monaghan, J.J. 1977, MNRAS 181, 375.Google Scholar
Greengard, L. & Rokhlin, V. 1987, J. Comp. Phys., 73, 325.Google Scholar
Habets, G.M.H.J. 1985, Ph.D. Thesis, University of Amsterdam.Google Scholar
Habets, G.M.H.J. 1986, A&A 167, 61.Google Scholar
Hernquist, L. 1987, ApJS 64, 715.Google Scholar
Hernquist, L. & Katz, N. 1989, ApJS 70, 419.Google Scholar
Iben, I. Jr & Livio, M. 1993, PASP 105, 1373.Google Scholar
Kopal, Z. 1978, Dynamics of Close Binary Systems , Reidel Publ. Cy.Google Scholar
Livio, M. & Soker, N. 1988, ApJ 329, 764.Google Scholar
Lucy, L. 1977, AJ 82, 1013.Google Scholar
Monaghan, J.J. 1985, Computer Phys. Rep. 3, 71.Google Scholar
Monaghan, J.J. 1992, ARA&A 30, 543.Google Scholar
Ostriker, J.P. 1975, talk presented at IAU Symposium 73.Google Scholar
Paczynski, B. 1976, in The Structure and Evolution of Close Binary Systems , IAU Symposium 73, Eggleton, P., Mitton, S. & Whelan, J. (Eds.), Reidel Publ. Cy, p. 75.Google Scholar
Rappaport, S. & Van den Heuvel, E.P.J. 1982, in Be Stars , IAU Symposium 98, Jaschek, M. & Groth, H.G. (Eds.), Reidel Publ. Cy, p. 327.Google Scholar
Shankar, A., Kley, W. & Burkert, A. 1994, in Interacting Binary Stars , Shafter, A.W. (Ed.), ASP Conf. Proc. Vol. 56, p. 436.Google Scholar
Taam, R.E. 1994, in Interacting Binary Stars , Shafter, A.W. (Ed.), ASP Conf. Proc. Vol. 56, p. 208.Google Scholar
Taam, R.E. & Bodenheimer, P. 1989, ApJ 337, 849.Google Scholar
Taam, R.E. & Bodenheimer, P. 1991, ApJ 373, 246.CrossRefGoogle Scholar
Taam, R.E. & Bodenheimer, P. 1992, in X-Ray Binaries and Recycled Pulsars , van den Heuvel, E.P.J. & Rappaport, S.A. (Eds.), Kluwer Academic Publishers, p. 281.Google Scholar
Taam, R.E., Bodenheimer, P. & Rozyczka, M. 1994, ApJ 431, 247.Google Scholar
Terman, J.L., Taam, R.E. & Hernquist, L. 1994, ApJ 422, 729.Google Scholar
Terman, J.L., Taam, R.E. & Hernquist, L. 1995, ApJ (submitted).Google Scholar
Thorne, K.S. & Zytkow, A.N. 1977, ApJ 212, 832.Google Scholar
Van den Heuvel, E.P.J. 1992, in X-Ray Binaries and Recycled Pulsars , van den Heuvel, E.P.J. & Rappaport, S.A. (Eds.), Kluwer Academic Publishers, p. 233.Google Scholar
Van den Heuvel, E.P.J. 1994, Space Sci. Rev., 66, 309.Google Scholar
Van den Heuvel, E.P.J. & Rappaport, S. 1987, in Physics of Be Stars , Slettebak, A. & Snow, T.P. (Eds.), Cambridge University Press, p. 291.Google Scholar
Webbink, R.F. 1979, in Changing Trends in Variable Star Research , IAU Coll. No. 46, Bateson, F.M., Smak, J. & Urch, I.H. (Eds.), Univ. Waikato, p. 102.Google Scholar