Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T05:49:17.783Z Has data issue: false hasContentIssue false

Cold Molecular Gas as Baryonic Dark Matter

Published online by Cambridge University Press:  26 May 2016

Daniel Pfenniger*
Affiliation:
Geneva Observatory, University of Geneva, Sauverny, Switzerland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the different cold dark gas models that have been proposed in the literature, as well as a new variant which addresses their principal stability problems by taking into account the property of molecular hydrogen to become solid or liquid below 33 K and at sufficiently high pressure. This new physical ingredient provides the possibility to stabilise cold gas globules by a core of condensed molecular hydrogen. Such loosely bound cold globules behave in a galaxy as a collisionless ensemble of matter, and form a reservoir of gas easily liberated through, e.g., UV excitation. the cold condensed cores survive the longest, of order a Gyr in the solar neighbourhood radiation field, and much longer in spiral outer HI disks.

Type
Part 7: Baryonic Dark Matter
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bosma, A. 1981, AJ, 86, 1791.Google Scholar
Burkert, A., & O'Dell, C.R. 1998, ApJ, 503, 792.CrossRefGoogle Scholar
Combes, F., & Pfenniger, D. 1997, A&A, 327, 453.Google Scholar
Cuillandre, J.-Ch., et al. 2001, ApJ, 554, 190.CrossRefGoogle Scholar
de Paolis, F., Ingrosso, G., Jetzer, P., & Roncadelli, M. 1995, A&A, 295, 567.Google Scholar
Draine, B.T. 1998, ApJ, 509, L41.Google Scholar
Draine, B.T. 2004, in “The Cold Universe”, Saas Fee Advanced Course 32, Pfenniger, D. & Revaz, Y. (eds.), Springer, Berlin, p. 213.Google Scholar
Gerhard, O., & Silk, J. 1996, ApJ, 472, 34.CrossRefGoogle Scholar
Henriksen, R.N., & Widrow, L.M. 1995, A&A, 441, 70.Google Scholar
Hoekstra, H., van Albada, T.S., & Sancisi, R. 2001, MNRAS, 323, 453.Google Scholar
Kalberla, P.M.W. 2003, ApJ, 588, 805.Google Scholar
Kalberla, P.M.W., & Kerp, J. 1998, A&A, 339, 745.Google Scholar
Kroupa, P. 1997, New Astron., 2, 139.CrossRefGoogle Scholar
Larson, R.B. 1969, MNRAS, 145, 271.Google Scholar
Lawrence, A. 2001, MNRAS, 323, 147.Google Scholar
Low, C., & Lynden-Bell, D. 1976, MNRAS, 176, 367.CrossRefGoogle Scholar
Masset, F.S., & Bureau, M. 2003, ApJ, 586, 152.Google Scholar
O'Dell, C.R., et al. 2002, AJ, 123, 3329.Google Scholar
Padmanabhan, T. 2001, Theoretical Astrophysics Vol. II, Cambridge.CrossRefGoogle Scholar
Pfenniger, D. 1996, in “Barred Galaxies and Circumstellar Activity”, Nobel Symp. 98, Sandqvist, Aa. & Lindblad, P.O. (eds.), Springer, Berlin, p. 91.CrossRefGoogle Scholar
Pfenniger, D. 2004, A&A, to be submitted.Google Scholar
Pfenniger, D., & Combes, F. 1994, A&A, 285, 93 (PC94).Google Scholar
Pfenniger, D., Combes, F., & Martinet, L. 1994, A&A, 285, 79.Google Scholar
Rees, M.J. 1976, MNRAS, 176, 483.CrossRefGoogle Scholar
Revaz, Y., & Pfenniger, D. 2004, A&A, to be submitted.Google Scholar
Sciama, D.W. 2000a, MNRAS, 312, 33.Google Scholar
Sciama, D.W. 2000b, MNRAS, 319, 1001.CrossRefGoogle Scholar
Walker, M., & Wardle, M. 1998, ApJ, 498, L125.Google Scholar