No CrossRef data available.
Article contents
CMB Analysis of Boomerang & Maxima & the Cosmic Parameters {Ωtot,Ωbh2, Ωcdmh2, ΩΛ, ns}
Published online by Cambridge University Press: 26 May 2016
Abstract
We show how estimates of parameters characterizing inflation-based theories of structure formation localized over the past year when large scale structure (LSS) information from galaxy and cluster surveys was combined with the rapidly developing cosmic microwave background (CMB) data, especially from the recent Boomerang and Maxima balloon experiments. All current CMB data plus a relatively weak prior probability on the Hubble constant, age and LSS points to little mean curvature (Ωtot = 1.08±0.06) and nearly scale invariant initial fluctuations (ns = 1.03±0.08), both predictions of (non-baroque) inflation theory. We emphasize the role that degeneracy among parameters in the Lpk = 212 ± 7 position of the (first acoustic) peak plays in defining the Ωtot range upon marginalization over other variables. Though the CDM density is in the expected range (Ωcdmh2 = 0.17 ± 0.02), the baryon density Ωbh2 = 0.030 ± 0.005 is somewhat above the independent 0.019 ± 0.002 nucleosynthesis estimates. CMB+LSS gives independent evidence for dark energy (ΩΛ = 0.66 ± 0.06) at the same level as from supernova (SN1) observations, with a phenomenological quintessence equation of state limited by SN1+CMB+LSS to wQ < −0.7 cf. the wQ=−1 cosmological constant case.
- Type
- Part IX: Putting it all together
- Information
- Copyright
- Copyright © Astronomical Society of the Pacific 2005