Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T00:44:19.607Z Has data issue: false hasContentIssue false

The Chemical Evolution of the Universe

Published online by Cambridge University Press:  13 May 2016

Antoinette Songaila
Affiliation:
Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Lennox L. Cowie
Affiliation:
Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We still know relatively little about the local metal density outside of galaxies and clusters, but at high redshifts (z ~ 3) the advent of highly efficient high-resolution spectrographs on the new 8–10m telescopes has revolutionized the study of quasar absorption lines. This allows us to track the bulk of the baryons in the Universe, which are in highly observable form at this redshift, and to determine the metal density of the gas that contains most of the baryonic material. One of the more surprising results that has emerged is how uniformly the intergalactic gas at redshifts 2–4 is pervaded by metals, and we discuss current limits on such metal contamination of the low density gas. These measurements will be useful in understanding and calibrating feedback processes in early generations of small galaxies. Future work will track the metal distribution at higher redshift using bright z = 5 SDSS quasars.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Aguirre, A., Hernquist, L., Weinberg, D., Katz, N., & Gardner, J. 2000a, ApJ, in press (astro-ph/0006345).Google Scholar
Aguirre, A., Hernquist, L., Katz, N., Gardner, J., & Weinberg, D. 2000b, ApJ, in press (astro-ph/0006346).Google Scholar
Bi, H. G., & Davidsen, A. 1997, ApJ, 479, 523 CrossRefGoogle Scholar
Cen, R. Y., Miralda-Escudé, J., Ostriker, J. P. O., & Rauch, M. 1994, ApJ, 437, L9 CrossRefGoogle Scholar
Cowie, L. L. 1998, in The Post-Recombination Universe, ed. Kaiser, N. & Lasenby, A. (Kluwer: Dordrecht), 1 Google Scholar
Cowie, L. L., & Songaila, A. 1998, Nature, 394, 44 CrossRefGoogle Scholar
Cowie, L. L., Songaila, A., Kim, T.-S., & Hu, E. M. 1995, AJ, 109, 1522 CrossRefGoogle Scholar
Croft, R. A. C., Weinberg, D. H., Katz, N, & Hernquist, L. 1998, ApJ, 495, 44 CrossRefGoogle Scholar
Davé, R., Hernquist, L., Wienberg, D. H., & Katz, N. 1997, ApJ, 477, 21 CrossRefGoogle Scholar
Dave, R., Hellsten, U., Hernquist, L., Katz, N., & Weinberg, D. H. 1998, ApJ, 509, 661 CrossRefGoogle Scholar
Efstathiou, G. 2000, MNRAS, 317, 697 CrossRefGoogle Scholar
Ellison, S. L., Songaila, A., Schaye, J., & Pettini, M. 2000, AJ, 120, 1175 CrossRefGoogle Scholar
Fan, X., et al. 1999, AJ, 118, 1 CrossRefGoogle Scholar
Fan, X. et al. 2000, AJ, 119, 1 CrossRefGoogle Scholar
Fan, X., Strauss, M. A., Richards, G. T., Newman, J. A., Becker, R. H. et al. 2001, AJ, in press (astro-ph/0008122).Google Scholar
Fukugita, M., Hogan, C. J., & Peebles, P. J. E. 1998, ApJ, 503, 518 CrossRefGoogle Scholar
Gnedin, N. Y., & Ostriker, J. P. O. 1997, ApJ, 486, 581 CrossRefGoogle Scholar
Gnedin, N. Y. 1998, MNRAS, 294, 407 CrossRefGoogle Scholar
Gnedin, N. Y., & Hui, L. 1998, MNRAS, 296, 44 CrossRefGoogle Scholar
Haehnelt, M. G., Steinmetz, M., & Rauch, M. 1996, ApJ, 465, L95 CrossRefGoogle Scholar
Hellsten, U., et al. 1997, ApJ, 487, 482 CrossRefGoogle Scholar
Hernquist, L., Katz, N., Weinberg, D. H., & Miralda-Escudé, J. 1996, ApJ, 457, L5 CrossRefGoogle Scholar
Hui, L., Gnedin, N. Y., & Zhang, Y. 1997, ApJ, 486, 599 CrossRefGoogle Scholar
Lu, L. 1991, ApJ, 379, 99 CrossRefGoogle Scholar
Lu, L., Sargent, W. L. W., Barlow, T. A., & Rauch, M. 1998, preprint [astro-ph/9802189].Google Scholar
Madau, P., & Shull, J. M. 1996, ApJ, 457, 551 CrossRefGoogle Scholar
Machacek, M., Bryan, G., Anninos, P., Meiksin, A., & Norman, M. 1998, Proc. of 6th International Symposium, PASCOS 98, ed. Nath, P. (World Scientific), 43 Google Scholar
Norris, J., Peterson, B. A., & Hartwick, F. D. A. 1983, ApJ, 273, 450 CrossRefGoogle Scholar
Songaila, A., & Cowie, L. L. 1996, AJ, 112, 335 CrossRefGoogle Scholar
Songaila, A., 1998, AJ, 115, 2184 CrossRefGoogle Scholar
Steinmetz, M. 1997, Proceedings of the 13th IAP Colloquium: Structure and Evolution of the IGM from QSO Absorption Line Systems, ed. Petitjean, P. & Chariot, S., 281 Google Scholar
Theuns, T., Mo, H. J., & Schaye, J. 2000, MNRAS, in press (astro-ph/0006065).Google Scholar
Tytler, D., & Fan, X.-M. 1994, ApJ, 424, L87 CrossRefGoogle Scholar
Tytler, D., et al. 1995, in QSO Absorption Lines, ESO Astrophysics Symposia, ed. Meylan, G. (Heidelberg: Springer), 289 CrossRefGoogle Scholar
Weinberg, D. H., Hernquist, L., Katz, N., Croft, R., & Miralda-Escudé, J. 1997, Proceedings of the 13th IAP Colloquium, Structure and Evolution of the Intergalactic Medium from QSO Absorption Lines, ed. Petitjean, P. & Chariot, S. (Paris: Nouvelles Frontières), 133 Google Scholar
Zhang, Y., Anninos, P., & Norman, M. L. 1995, ApJ, 453, L57 CrossRefGoogle Scholar
Zheng, W., Tsvetanov, Z. I., Schneider, D. P., Fan, X., Becker, R. H., et al. 2000, AJ, in press (astro-ph/0005247).Google Scholar