Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:50:13.832Z Has data issue: false hasContentIssue false

Chemical abundances of massive stars in Local Group galaxies

Published online by Cambridge University Press:  26 May 2016

Kim A. Venn
Affiliation:
University of Minnesota and Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA
Andreas Kaufer
Affiliation:
European Southern Observatory, Alonso de Cordova 3107, Santiago 19, Chile
Eline Tolstoy
Affiliation:
Kapteyn Instituut, Universiteit Groningen, Postbus 800, NL-9700 AV Groningen, Nederland
Rolf-Peter Kudritzki
Affiliation:
Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822, USA
Norbert Przybilla
Affiliation:
Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822, USA
Stephen J. Smartt
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Daniel J. Lennon
Affiliation:
Isaac Newton Group of Telescopes, Apartado de correos 321, Santa Cruz de La Palma, Tenerife, E-38700, España

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

Type
Part 1. Atmospheres of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Brandenburg, H.J., Skillman, E.D. 1998, A&AS 193, 7011.Google Scholar
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D.L., Nissen, P.E., Tomkin, J. 1993, A&A 275, 101.Google Scholar
Gallart, C., Aparicio, A., Vílchez, J.M. 1996a, AJ 112, 1928.Google Scholar
Gallart, C., Aparicio, A., Bertelli, G., Chiosi, C. 1996b, AJ 112, 2596.Google Scholar
Gilmore, G., Wyse, R.F.G. 1991, Astrophys. Letters 367, 55.Google Scholar
Grebel, E.K. 1999, in: Whitelock, P. & Cannon, R. (eds.), The Stellar Content of Local Group Galaxies, Proc. IAU Symp. No. 192 (San Francisco: ASP), p. 17.Google Scholar
Grevesse, N., Sauval, A.J. 1998, Space Sci. Reviews 85, 161.Google Scholar
Hodge, P., Miller, B.W. 1995, ApJ 451, 176.CrossRefGoogle Scholar
Martin, C.L., Kobulnicky, H.A., Heckman, T.M. 2002, ApJ 574, 663.Google Scholar
Mateo, M. 1998, Ann. Review Astron. Astrophys. 36, 435.Google Scholar
McWilliam, A. 1997, Ann. Review Astron. Astrophys. 35, 503.Google Scholar
Moles, M., Aparicio, A., Masegosa, J. 1990, A&A 228, 310.Google Scholar
Nissen, P.E., Schuster, W.J. 1997, A&A 326, 751.Google Scholar
Pagel, B.E.J., Tautvaisiene, G. 1998, MNRAS 299, 535.Google Scholar
Pagel, B.E.J., Edmunds, M.G., Smith, G. 1980, MNRAS 193, 219.Google Scholar
Pilyugin, L.S. 2001, A&A 374, 412.Google Scholar
Przybilla, N., Butler, K., Becker, S.R., Kudritzki, R.-P. 2001, A&A 369, 1009.Google Scholar
Rolleston, W.R.J., Dufton, P.L., McErlean, N.D., Venn, K.A. 1999, A&A 348, 728.Google Scholar
Skillman, E.D., Terlevich, R., Melnick, J. 1989a, MNRAS 240, 563.CrossRefGoogle Scholar
Skillman, E.D., Kennicutt, R.C., Hodge, P.W. 1989b, ApJ 347, 875.Google Scholar
Smartt, S.J., Rolleston, W.R.J. 1997, ApJ 481, 47.Google Scholar
Venn, K.A. 1995, ApJS 99, 659.CrossRefGoogle Scholar
Venn, K.A. 1999, ApJ 518, 405.CrossRefGoogle Scholar
Venn, K.A., Lennon, D.J., Kaufer, A., McCarthy, J.K., Przybilla, N., Kudritzki, R.-P., Lemke, M., Skillman, E.D., Smartt, S.J. 2001, ApJ 547, 765.Google Scholar
van Zee, L., Skillman, E.D., Haynes, M.P. 1999, A&AS 194, 504.Google Scholar