Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T02:55:02.815Z Has data issue: false hasContentIssue false

CCDs in Active Acquisition Systems

Published online by Cambridge University Press:  07 August 2017

A. Blecha*
Affiliation:
Observatoire de Genève

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The use of CCD detectors as elements of an active acquisition system is reviewed. In such systems, the CCD image acquisition, data-analysis and the instrument and telescope controls are no longer separated elements whose actions are coordinated by an astronomer and/or operator, but are parts of a global system. The interaction between incoming data (nature of the object, registered flux, current PSF and atmospheric transmission), observer's requirement (S/N, spatial and temporal resolution) and forthcoming CCD exposure characteristics (CCD preparation, exposure time, read-out parameters) is examined. The requirements for the CCD electronics, data acquisition system are evaluated and examples of recent application in imaging, spectroscopy, photometry and auxiliary equipment are given. An attempt is made to analyze future technological trends and possible bottlenecks in such systems and to propose simple rules to adopt when designing CCD hardware and software.

Type
Section I — Review Papers
Copyright
Copyright © Kluwer 1995 

References

Blecha, A., Weber, L., Simond, G. and Queille, D. 1990 in CCDs in Astronomy, Jacoby, G. H., ed., ASP conference series, Vol. 8, p. 192.Google Scholar
Blecha, A. and Weber, L 1992 Inter-technical description, Observatoire de Genève.Google Scholar
Brooks, P. W. 1990 Proceedings Astronomical Society of Australia, 8, No. 4, p. 377.Google Scholar
Bruton, J. R., Hall, D. S., Boyd, L. J., Genet, R. M. and Lines, R. D. 1989 Astrophysics and Space Science, 155, 27.Google Scholar
Burnet, M. 1976 Thesis No. 235, Ecole Polytechnique de Lausanne (French).Google Scholar
Filippenko, A. V., ed. 1991 Robotic Telescopes in the 1990s; ASP Conf. Series, Vol 34.Google Scholar
Genet, R. M., Boyd, L. J., Kissell, K. E., Crawford, D. L. and Hall, D. S. 1987 PASP 99, 660.Google Scholar
Janesick, J., Bredhauter, R., Chandler, Ch. and Burke, B. 1988 in X-Ray Instrumentation in Astronomy. II., Proc. SPIE, 982, Golub, R., ed., p. 70.Google Scholar
Lasker, B. M., Sturch, C. R., Mclean, B. J., Russell, J. L. and Jenkner, H. 1990 AJ 99, 2019 and 2173.Google Scholar
Nelson, E. R. and Zeilik, M. 1990 ApJ 349, 163.CrossRefGoogle Scholar
Perlmutter, S., Muller, R. A., Newberg, H. J. M., Pennypacker, C. R., Sasseen, T. P. and Smith, C. K. 1991 Robotic Telescopes in the 1990's, Filppenko, A. V., ed., ASP Conf. Series, Vol 34, p. 67.Google Scholar
Crawford, D. L. and Craine, E. R., eds. 1994 Proce. SPIE 2198, Astronomical Telescopes and Instrumentation for the 21st Century, p. 67.Google Scholar
Queloz, D. 1995 In IAU Symposium No. 167, Advances in Array Technology and Applications, Philip, A. G. D., Janes, K. A. and Upgren, A. R., eds., Kluwer Academic Press, p. 221.Google Scholar
Rodono, M. and Cutispoto, G. 1992 A&AS 95, 55.Google Scholar
Richmond, M. W., Treffers, R. R. and Filippenko, A. V. 1993 PASP 105, 1164.Google Scholar
Rufener, F. and Nicolet, B. 1988 A&A 206, 357.Google Scholar
Smith, R. M. 1994 Waveform Definition Language User Manual, beta release, CTIO internal document, available on request.Google Scholar
Tyson, N. D. and Gal, R. R. 1993 AJ 105, 1206.Google Scholar
Vanderspek, R., Doty, J. P. and Ricker, G. R. 1991 Robotic telescopes in the 1990s, Filippenko, A. V., ed., ASP Conf. Series, Vol. 34, p. 123.Google Scholar
Weber, L. 1993 Inter-Manuel de Reference, Observatoire de Genève (French).Google Scholar
Weber, L. 1992 Inter-Manuel de l'Utilisateur, Observatoire de Genève (French).Google Scholar
Wei, M., Chen, J. and Jiang, Z. 1990 PASP 102, 698.Google Scholar