Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T21:35:19.107Z Has data issue: false hasContentIssue false

Atomic Physics of the 12-μm and Related Lines

Published online by Cambridge University Press:  03 August 2017

Edward S. Chang*
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 12 μm emission lines were unexpectedly detected about a decade ago. Great progress has been made in understanding the atomic physics underlying these high-l Rydberg transitions in Mg I and other atoms. In a magnetic field, their Landé g factor is shown to be unity. At disk center, the shift of the absorption trough relative to the emission peak is demonstrated to be due to the quadratic Stark Effect, permitting measurement of the photospheric electric field strengths. Other related lines of Mg I require accurate atomic fine structure data to interpret properly their complex line profiles. Related lines are found in the ATMOS spectra for C I, Na I, Al I, Si I, Ca I, and Fe I, in addition to H I.

Type
Part 4: Infrared Atomic Physics and Line Formation
Copyright
Copyright © Kluwer 1994 

References

Avrett, E. H., Chang, E. S., and Loeser, R.: 1993, these proceedings.Google Scholar
Biémont, E. and Brault, J. W.: 1986, Physica Scripta 34, 751.CrossRefGoogle Scholar
Brault, J. W. and Noyes, R. W.: 1983, Astrophys. J. (Letters) 269, 61.CrossRefGoogle Scholar
Carlsson, M., Rutten, R. J., and Shchukina, N. G.: 1992, Astron. Astrophys. 253, 567.Google Scholar
Chang, E. S. and Noyes, R.W.: 1983, Astrophys. J. (Letters) 275, 11.CrossRefGoogle Scholar
Chang, E. S.: 1984, J. Phys. B 17, 11.Google Scholar
Chang, E. S.: 1987, Physica Scripta 35, 792.Google Scholar
Chang, E. S., Avrett, E. H., Mauas, P. J., Noyes, R. W., and Loeser, R.: 1991, Astrophys. J. (Letters) 379, 79.Google Scholar
Chang, E. S., Avrett, E. H., Mauas, P. J., Noyes, R. W., and Loeser, R.: 1992, in Giampapa, M., and Bookbinder, J. A. (eds.), Seventh Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ASP Conference Series, Vol. 26, p. 521.Google Scholar
Chang, E. S., and Schoenfeld, W. G.: 1991, Astrophys. J. 383, 450.CrossRefGoogle Scholar
Deming, D., Boyle, R. J., Jennings, D. E., and Wiedermann, G. R.,: 1988, Astrophys. J. 333, 978.Google Scholar
Deming, D., Hewagama, T., and Jennings, D. E., McCabe, G., and Wiedemann, G.: 1993, these proceedings.Google Scholar
Farmer, C. B. and Norton, R. H.: 1989, A High-Resolution Atlas of the Infrared Spectrum of the Sun and the Earth's Atmoshpere from Space, NASA Ref. Pub. 1224, Vol. 1.Google Scholar
Goldman, A., Blatherwick, R. D., Murcray, F. H., Van Allen, J. W., Bradford, C. M., Cook, G.R., and Murcray, D. H.: 1980, New Atlas of IR Solar Spectra, Vol. 1, Line Positions and Identifications, Vol.2, The Spectra, Department of Physics, University of Denver.Google Scholar
Jefferies, J. T.: 1991 Astrophys. J. 377, 337.CrossRefGoogle Scholar
Johansson, S., Nave, G., Geller, M., Sauval, A. J., Grevesse, N.: 1993, these proceedings.Google Scholar
Kurucz, R.: 1990, in Cox, A. N., Livingston, W. C., and Mathews, M. (eds.), The Solar Atmosphere and Interior, Tucson, University of Arizona Press, p. 663.Google Scholar
Lemoine, B., Demuynck, C., Destombes, J. L., and Davis, P. B.: 1988, J. Chem. Phys. 89, 673.CrossRefGoogle Scholar
Lemoine, B., Demuynck, C., and Destombes, J. L.: 1988, Astron. Astrophys. 191, L4.Google Scholar
Lemoine, B., Petitprez, D., Destombes, J. L., and Chang, E. S.: 1990, J. Phys. B 23, 2217S.Google Scholar
Murcray, F. J., Goldman, A. Murcray, F. H., Bradford, C. M., Murcray, D. G., Coffey, M. T., and Mankin, W. G.: 1981, Astrophys. J. (Letters) 247, 97.Google Scholar
Rutten, R., and Carlsson, M.: 1993, these proceedings.Google Scholar
Schoenfeld, W. G., Chang, E. S., and Geller, M.: 1993, these proceedings.Google Scholar