Article contents
Atmospheric Circulation of Hot Jupiters
Published online by Cambridge University Press: 26 May 2016
Abstract
About 40% of the extrasolar giant planets discovered so far have orbital distances smaller than 0.2 AU. These “hot Jupiters” are expected to be in synchronous rotation with their star. The ability to measure their radii prompts a careful reexamination of their structure. I show that their atmospheric structure is complex and that thermal balance cannot be achieved through radiation only but must involve heat advection by large-scale circulation. A circulation model inspired from Venus is proposed, involving a relatively strong zonal wind (with a period that can be as short as 1 day). It is shown that even this strong wind is incapable of efficiently redistributing heat from the day side to the night side. Temperature variations of 200 K or more are to be expected, even at pressures as large as 10 bar. As a consequence, clouds should be absent on the day side, allowing more efficient absorption of the stellar light. The global chemical composition of the atmosphere should also be greatly affected by the presence of large temperature variations. Finally, stellar tides may also be important in their ability to deposit heat at levels untouched by stellar radiation, thereby slowing further the cooling of the planets.
- Type
- Part III: Structure and atmospheres of planets
- Information
- Copyright
- Copyright © Astronomical Society of the Pacific 2004
References
- 1
- Cited by