Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-08T12:13:53.411Z Has data issue: false hasContentIssue false

The Atmospheres and Spectra of Central Stars

Published online by Cambridge University Press:  14 August 2015

K.H. Böhm*
Affiliation:
University of Heidelberg, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

After a brief discussion of the determination of the effective temperature, the surface gravity and the chemical composition of the central stars, we describe the typical problems arising in the computation of static and dynamical models of the very hot atmospheres of these objects. Special attention is paid (1) to the strong non-greyness of the atmosphere, (2) the electron-scattering contribution to the source function, (3) the contribution of the higher ions of C, N, O and Ne to the absorption coefficient, (4) the importance of radiation-pressure effects. The application of the computed energy distribution to the determination of the ionization stratification of the nebula and to the calculation of the bolometric correction is discussed.

A formation of emission edges due to the Schuster effect does not seem to occur in any of the static non-grey model atmospheres which have been computed so far. The reason is that the steep temperature gradient in the uppermost layers of these models strongly favors the formation of absorption edges. Using very simple dynamical models by Schmid-Burgk (1967) we discuss the possibility of a considerable flattening of this temperature gradient by a hydrodynamic outflow driven by radiative acceleration. We argue that the Schuster effect may be much more important, if these atmospheres are not in hydrostatic equilibrium.

The position of central stars of different spectral type in the Teff-g plane is discussed.

Type
Session V – Central Stars
Copyright
Copyright © Reidel 1968 

References

Aller, L. H. (1948) Astrophys. J., 108, 462.Google Scholar
Aller, L.H. (1956) Gaseous Nebulae, Chapman and Hall, London.Google Scholar
Aller, L.H. (1965) in Astronomie und Astrophysik, Ed. by Voigt, H. H., Springer-Verlag, Berlin, p. 571.Google Scholar
Aller, L.H., Liller, W. (1967) in Stars and Stellar Systems, vol. VII, Ed. by Kuiper, G. P. and Middlehurst, B. M., University of Chicago Press (in press).Google Scholar
Avrett, E.H., Krook, M. (1963) Astrophys. J. 137, 874.Google Scholar
Bertola, F. (1964) Publ. astr. Soc. Pacific, 76, 241.Google Scholar
Böhm, K.H. (1954) Z. Astrophys., 34, 182.Google Scholar
Böhm, K.H. (1965) Z. Astrophys., 62, 167.Google Scholar
Böhm, K.H. (1967) Unpublished.Google Scholar
Böhm, K.H. (1967b) Z. Astrophys., 67, 219.Google Scholar
Böhm, K.H., Deinzer, W. (1965) Z. Astrophys., 61, 1.Google Scholar
Böhm, K.H., Deinzer, W. (1966) Z. Astrophys., 63, 177.Google Scholar
Capriotti, E.R., Kovach, W.S. (1968) Astrophys. J., 151, 991.Google Scholar
Flower, D.R. (1968) in the present volume, p. 77.Google Scholar
Gebbie, K. B., Seaton, M.J. (1963) Nature, 199, 580.Google Scholar
Gebbie, K.B. (1967) Mon. Not. R. astr. Soc., 135, 181.CrossRefGoogle Scholar
Goodson, W.L. (1967) Z. Astrophys., 66, 118.Google Scholar
Greenstein, J.L., Minkowski, R. (1964) Astrophys. J., 140, 1601.CrossRefGoogle Scholar
Harman, R.J., Seaton, M.J. (1964) Astrophys. J., 140, 824.Google Scholar
Harman, R.J., Seaton, M.J. (1966) Mon. Not. R. astr. Soc., 132, 15.Google Scholar
Henyey, L.G. (1967) Astrophys. J., 148, 207.Google Scholar
Khromov, G.S. (1962) Astr. Zu., 39, 468.Google Scholar
Kourganoff, V. (1963) Basic Methods in Transfer Problems, Dover Publ., New York.Google Scholar
Lucy, L.B. (1964) in Proc. 1st Harvard-Smithson. Conf. on Stellar Atmospheres, p. 93.Google Scholar
Mathews, W.G. (1966) Astrophys. J., 143, 173.Google Scholar
Minkowski, R., Aller, L.H. (1954) Astrophys. J., 120, 261.CrossRefGoogle Scholar
O'Dell, C.R. (1962) Astrophys. J., 135, 371.Google Scholar
O'Dell, C.R. (1963) Astrophys. J., 138, 67.Google Scholar
O'Dell, C.R. (1968) in the present volume, p. 361.Google Scholar
Oke, J.B. (1954) Astrophys. J., 120, 22.Google Scholar
Osterbrock, D.E. (1960) Astrophys. J., 131, 541.Google Scholar
Osterbrock, D.E. (1966) in Stellar Evolution, Ed. by Stein, R. F. and Cameron, A.G.W., Plenum Press, New York, p. 381.Google Scholar
Perek, L., Kohoutek, L. (1967) Catalogue of Galactic Planetary Nebulae, Academia Publishing House of the Czechoslovak Academy of Sciences, Prague.Google Scholar
Petrie, R.M. (1947) Pub. Dom. astrophys. Obs., Victoria, 7, 321.Google Scholar
Schmid-Burgk, J. (1967) Unpublished.Google Scholar
Schmidt, M. (1963) Astrophys. J., 137, 758.Google Scholar
Seaton, M.J. (1966) Mon. Not. R. astr. Soc., 132, 113.CrossRefGoogle Scholar
Sedov, L.I. (1959) Similarity and Dimensional Methods in Mechanics, Infosearch Ltd., London.Google Scholar
Shklovsky, I.S. (1956) Astr. Zu., 33, 222, 315.Google Scholar
Unsöld, A. (1951) Naturwissenschaften, 38, 525.CrossRefGoogle Scholar
Vorontsov-Velyaminov, B.A. (1953) Gasnebel und Neue Sterne, Verlag Kultur und Fortschritt, Berlin.Google Scholar
Weidemann, V. (1963) Z. Astrophys., 57, 87.Google Scholar
Williams, R.E. (1967) The Ionization of Planetary Nebulae, Preprint.Google Scholar
Wilson, O.C. (1948) Astrophys. J., 108, 201.Google Scholar
Wurm, K., Singer, O. (1952) Z. Astrophys., 30, 387.Google Scholar